Charting the future of AI, from safer answers to faster thinking

charting-the-future-of-ai,-from-safer-answers-to-faster-thinking

Adoption of new tools and technologies occurs when users largely perceive them as reliable, accessible, and an improvement over the available methods and workflows for the cost. Five PhD students from the inaugural class of the MIT-IBM Watson AI Lab Summer Program are utilizing state-of-the-art resources, alleviating AI pain points, and creating new features and capabilities to promote AI usefulness and deployment — from learning when to trust a model that predicts another’s accuracy to more effectively reasoning over knowledge bases. Together, the efforts from the students and their mentors form a through-line, where practical and technically rigorous research leads to more dependable and valuable models across domains.

Building probes, routers, new attention mechanisms, synthetic datasets, and program-synthesis pipelines, the students’ work spans safety, inference efficiency, multimodal data, and knowledge-grounded reasoning. Their techniques emphasize scaling and integration, with impact always in sight.

Learning to trust, and when

MIT math graduate student Andrey Bryutkin’s research prioritizes the trustworthiness of models.

 » Read More

Teaching robots to map large environments

teaching-robots-to-map-large-environments

A robot searching for workers trapped in a partially collapsed mine shaft must rapidly generate a map of the scene and identify its location within that scene as it navigates the treacherous terrain.

Researchers have recently started building powerful machine-learning models to perform this complex task using only images from the robot’s onboard cameras, but even the best models can only process a few images at a time. In a real-world disaster where every second counts, a search-and-rescue robot would need to quickly traverse large areas and process thousands of images to complete its mission.

To overcome this problem, MIT researchers drew on ideas from both recent artificial intelligence vision models and classical computer vision to develop a new system that can process an arbitrary number of images. Their system accurately generates 3D maps of complicated scenes like a crowded office corridor in a matter of seconds. 

 » Read More

Method teaches generative AI models to locate personalized objects

method-teaches-generative-ai-models-to-locate-personalized-objects

Say a person takes their French Bulldog, Bowser, to the dog park. Identifying Bowser as he plays among the other canines is easy for the dog-owner to do while onsite.

But if someone wants to use a generative AI model like GPT-5 to monitor their pet while they are at work, the model could fail at this basic task. Vision-language models like GPT-5 often excel at recognizing general objects, like a dog, but they perform poorly at locating personalized objects, like Bowser the French Bulldog.    

To address this shortcoming, researchers from MIT and the MIT-IBM Watson AI Lab have introduced a new training method that teaches vision-language models to localize personalized objects in a scene.

Their method uses carefully prepared video-tracking data in which the same object is tracked across multiple frames. They designed the dataset so the model must focus on contextual clues to identify the personalized object,

 » Read More

Accounting for uncertainty to help engineers design complex systems

accounting-for-uncertainty-to-help-engineers-design-complex-systems

Designing a complex electronic device like a delivery drone involves juggling many choices, such as selecting motors and batteries that minimize cost while maximizing the payload the drone can carry or the distance it can travel.

Unraveling that conundrum is no easy task, but what happens if the designers don’t know the exact specifications of each battery and motor? On top of that, the real-world performance of these components will likely be affected by unpredictable factors, like changing weather along the drone’s route.

MIT researchers developed a new framework that helps engineers design complex systems in a way that explicitly accounts for such uncertainty. The framework allows them to model the performance tradeoffs of a device with many interconnected parts, each of which could behave in unpredictable ways.

Their technique captures the likelihood of many outcomes and tradeoffs, giving designers more information than many existing approaches which,

 » Read More

AI maps how a new antibiotic targets gut bacteria

ai-maps-how-a-new-antibiotic-targets-gut-bacteria

For patients with inflammatory bowel disease, antibiotics can be a double-edged sword. The broad-spectrum drugs often prescribed for gut flare-ups can kill helpful microbes alongside harmful ones, sometimes worsening symptoms over time. When fighting gut inflammation, you don’t always want to bring a sledgehammer to a knife fight.

Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and McMaster University have identified a new compound that takes a more targeted approach. The molecule, called enterololin, suppresses a group of bacteria linked to Crohn’s disease flare-ups while leaving the rest of the microbiome largely intact. Using a generative AI model, the team mapped how the compound works, a process that usually takes years but was accelerated here to just months.

“This discovery speaks to a central challenge in antibiotic development,” says Jon Stokes, senior author of a new paper on the work,

 » Read More

MIT affiliates win AI for Math grants to accelerate mathematical discovery

mit-affiliates-win-ai-for-math-grants-to-accelerate-mathematical-discovery

MIT Department of Mathematics researchers David Roe ’06 and Andrew Sutherland ’90, PhD ’07 are among the inaugural recipients of the Renaissance Philanthropy and XTX Markets’ AI for Math grants

Four additional MIT alumni — Anshula Gandhi ’19, Viktor Kunčak SM ’01, PhD ’07; Gireeja Ranade ’07; and Damiano Testa PhD ’05 — were also honored for separate projects.

The first 29 winning projects will support mathematicians and researchers at universities and organizations working to develop artificial intelligence systems that help advance mathematical discovery and research across several key tasks.

Roe and Sutherland, along with Chris Birkbeck of the University of East Anglia, will use their grant to boost automated theorem proving by building connections between the L-Functions and Modular Forms Database (LMFDB) and the Lean4 mathematics library (mathlib).

 » Read More

How to build AI scaling laws for efficient LLM training and budget maximization

how-to-build-ai-scaling-laws-for-efficient-llm-training-and-budget-maximization

When researchers are building large language models (LLMs), they aim to maximize performance under a particular computational and financial budget. Since training a model can amount to millions of dollars, developers need to be judicious with cost-impacting decisions about, for instance, the model architecture, optimizers, and training datasets before committing to a model. To anticipate the quality and accuracy of a large model’s predictions, practitioners often turn to scaling laws: using smaller, cheaper models to try to approximate the performance of a much larger target model. The challenge, however, is that there are thousands of ways to create a scaling law.

New work from MIT and MIT-IBM Watson AI Lab researchers addresses this by amassing and releasing a collection of hundreds of models and metrics concerning training and performance to approximate more than a thousand scaling laws. From this, the team developed a meta-analysis and guide for how to select small models and estimate scaling laws for different LLM model families,

 » Read More

Machine-learning tool gives doctors a more detailed 3D picture of fetal health

machine-learning-tool-gives-doctors-a-more-detailed-3d-picture-of-fetal-health

For pregnant women, ultrasounds are an informative (and sometimes necessary) procedure. They typically produce two-dimensional black-and-white scans of fetuses that can reveal key insights, including biological sex, approximate size, and abnormalities like heart issues or cleft lip. If your doctor wants a closer look, they may use magnetic resonance imaging (MRI), which uses magnetic fields to capture images that can be combined to create a 3D view of the fetus.

MRIs aren’t a catch-all, though; the 3D scans are difficult for doctors to interpret well enough to diagnose problems because our visual system is not accustomed to processing 3D volumetric scans (in other words, a wrap-around look that also shows us the inner structures of a subject). Enter machine learning, which could help model a fetus’s development more clearly and accurately from data — although no such algorithm has been able to model their somewhat random movements and various body shapes.

 » Read More

3 Questions: The pros and cons of synthetic data in AI

3-questions:-the-pros-and-cons-of-synthetic-data-in-ai

Synthetic data are artificially generated by algorithms to mimic the statistical properties of actual data, without containing any information from real-world sources. While concrete numbers are hard to pin down, some estimates suggest that more than 60 percent of data used for AI applications in 2024 was synthetic, and this figure is expected to grow across industries.

Because synthetic data don’t contain real-world information, they hold the promise of safeguarding privacy while reducing the cost and increasing the speed at which new AI models are developed. But using synthetic data requires careful evaluation, planning, and checks and balances to prevent loss of performance when AI models are deployed.       

To unpack some pros and cons of using synthetic data, MIT News spoke with Kalyan Veeramachaneni, a principal research scientist in the Laboratory for Information and Decision Systems and co-founder of DataCebo whose open-core platform, 

 » Read More

A new generative AI approach to predicting chemical reactions

a-new-generative-ai-approach-to-predicting-chemical-reactions

Many attempts have been made to harness the power of new artificial intelligence and large language models (LLMs) to try to predict the outcomes of new chemical reactions. These have had limited success, in part because until now they have not been grounded in an understanding of fundamental physical principles, such as the laws of conservation of mass. Now, a team of researchers at MIT has come up with a way of incorporating these physical constraints on a reaction prediction model, and thus greatly improving the accuracy and reliability of its outputs.

The new work was reported Aug. 20 in the journal Nature, in a paper by recent postdoc Joonyoung Joung (now an assistant professor at Kookmin University, South Korea); former software engineer Mun Hong Fong (now at Duke University); chemical engineering graduate student Nicholas Casetti; postdoc Jordan Liles; physics undergraduate student Ne Dassanayake;

 » Read More