Adoption of new tools and technologies occurs when users largely perceive them as reliable, accessible, and an improvement over the available methods and workflows for the cost. Five PhD students from the inaugural class of the MIT-IBM Watson AI Lab Summer Program are utilizing state-of-the-art resources, alleviating AI pain points, and creating new features and capabilities to promote AI usefulness and deployment — from learning when to trust a model that predicts another’s accuracy to more effectively reasoning over knowledge bases. Together, the efforts from the students and their mentors form a through-line, where practical and technically rigorous research leads to more dependable and valuable models across domains.
Building probes, routers, new attention mechanisms, synthetic datasets, and program-synthesis pipelines, the students’ work spans safety, inference efficiency, multimodal data, and knowledge-grounded reasoning. Their techniques emphasize scaling and integration, with impact always in sight.
Learning to trust, and when
MIT math graduate student Andrey Bryutkin’s research prioritizes the trustworthiness of models.
