Study could lead to LLMs that are better at complex reasoning

study-could-lead-to-llms-that-are-better-at-complex-reasoning

For all their impressive capabilities, large language models (LLMs) often fall short when given challenging new tasks that require complex reasoning skills.

While an accounting firm’s LLM might excel at summarizing financial reports, that same model could fail unexpectedly if tasked with predicting market trends or identifying fraudulent transactions.

To make LLMs more adaptable, MIT researchers investigated how a certain training technique can be strategically deployed to boost a model’s performance on unfamiliar, difficult problems.

They show that test-time training, a method that involves temporarily updating some of a model’s inner workings during deployment, can lead to a sixfold improvement in accuracy. The researchers developed a framework for implementing a test-time training strategy that uses examples of the new task to maximize these gains.

Their work could improve a model’s flexibility, enabling an off-the-shelf LLM to adapt to complex tasks that require planning or abstraction.

 » Read More

New postdoctoral fellowship program to accelerate innovation in health care

new-postdoctoral-fellowship-program-to-accelerate-innovation-in-health-care

The MIT Health and Life Sciences Collaborative (MIT HEALS) is launching the Biswas Postdoctoral Fellowship Program to advance the work of outstanding early-career researchers in health and life sciences. Supported by a gift from the Biswas Family Foundation, the program aims to help apply cutting-edge research to improve health care and the lives of millions.

The program will support exceptional postdocs dedicated to innovation in human health care through a full range of pathways, such as leveraging AI in health-related research, developing low-cost diagnostics, and the convergence of life sciences with such areas as economics, business, policy, or the humanities. With initial funding of $12 million, five four-year fellowships will be awarded for each of the next four years, starting in early 2026.

“An essential goal of MIT HEALS is to find new ways and opportunities to deliver health care solutions at scale, and the Biswas Family Foundation shares our commitment to scalable innovation and broad impact.

 » Read More

Robotic probe quickly measures key properties of new materials

robotic-probe-quickly-measures-key-properties-of-new-materials

Scientists are striving to discover new semiconductor materials that could boost the efficiency of solar cells and other electronics. But the pace of innovation is bottlenecked by the speed at which researchers can manually measure important material properties.

A fully autonomous robotic system developed by MIT researchers could speed things up.

Their system utilizes a robotic probe to measure an important electrical property known as photoconductance, which is how electrically responsive a material is to the presence of light.

The researchers inject materials-science-domain knowledge from human experts into the machine-learning model that guides the robot’s decision making. This enables the robot to identify the best places to contact a material with the probe to gain the most information about its photoconductance, while a specialized planning procedure finds the fastest way to move between contact points.

During a 24-hour test, the fully autonomous robotic probe took more than 125 unique measurements per hour,

 » Read More

Unpacking the bias of large language models

unpacking-the-bias-of-large-language-models

Research has shown that large language models (LLMs) tend to overemphasize information at the beginning and end of a document or conversation, while neglecting the middle.

This “position bias” means that, if a lawyer is using an LLM-powered virtual assistant to retrieve a certain phrase in a 30-page affidavit, the LLM is more likely to find the right text if it is on the initial or final pages.

MIT researchers have discovered the mechanism behind this phenomenon.

They created a theoretical framework to study how information flows through the machine-learning architecture that forms the backbone of LLMs. They found that certain design choices which control how the model processes input data can cause position bias.

Their experiments revealed that model architectures, particularly those affecting how information is spread across input words within the model, can give rise to or intensify position bias,

 » Read More

MIT and Mass General Brigham launch joint seed program to accelerate innovations in health

mit-and-mass-general-brigham-launch-joint-seed-program-to-accelerate-innovations-in-health

Leveraging the strengths of two world-class research institutions, MIT and Mass General Brigham (MGB) recently celebrated the launch of the MIT-MGB Seed Program. The new initiative, which is supported by Analog Devices Inc. (ADI), will fund joint research projects led by researchers at MIT and Mass General Brigham. These collaborative projects will advance research in human health, with the goal of developing next-generation therapies, diagnostics, and digital tools that can improve lives at scale. 

The program represents a unique opportunity to dramatically accelerate innovations that address some of the most urgent challenges in human health. By supporting interdisciplinary teams from MIT and Mass General Brigham, including both researchers and clinicians, the seed program will foster groundbreaking work that brings together expertise in artificial intelligence, machine learning, and measurement and sensing technologies with pioneering clinical research and patient care.

“The power of this program is that it combines MIT’s strength in science,

 » Read More

Using generative AI to help robots jump higher and land safely

using-generative-ai-to-help-robots-jump-higher-and-land-safely

Diffusion models like OpenAI’s DALL-E are becoming increasingly useful in helping brainstorm new designs. Humans can prompt these systems to generate an image, create a video, or refine a blueprint, and come back with ideas they hadn’t considered before.

But did you know that generative artificial intelligence (GenAI) models are also making headway in creating working robots? Recent diffusion-based approaches have generated structures and the systems that control them from scratch. With or without a user’s input, these models can make new designs and then evaluate them in simulation before they’re fabricated.

A new approach from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) applies this generative know-how toward improving humans’ robotic designs. Users can draft a 3D model of a robot and specify which parts they’d like to see a diffusion model modify, providing its dimensions beforehand. GenAI then brainstorms the optimal shape for these areas and tests its ideas in simulation.

 » Read More

LLMs factor in unrelated information when recommending medical treatments

llms-factor-in-unrelated-information-when-recommending-medical-treatments

A large language model (LLM) deployed to make treatment recommendations can be tripped up by nonclinical information in patient messages, like typos, extra white space, missing gender markers, or the use of uncertain, dramatic, and informal language, according to a study by MIT researchers.

They found that making stylistic or grammatical changes to messages increases the likelihood an LLM will recommend that a patient self-manage their reported health condition rather than come in for an appointment, even when that patient should seek medical care.

Their analysis also revealed that these nonclinical variations in text, which mimic how people really communicate, are more likely to change a model’s treatment recommendations for female patients, resulting in a higher percentage of women who were erroneously advised not to seek medical care, according to human doctors.

This work “is strong evidence that models must be audited before use in health care — which is a setting where they are already in use,” says Marzyeh Ghassemi,

 » Read More

Researchers present bold ideas for AI at MIT Generative AI Impact Consortium kickoff event

researchers-present-bold-ideas-for-ai-at-mit-generative-ai-impact-consortium-kickoff-event

Launched in February of this year, the MIT Generative AI Impact Consortium (MGAIC), a presidential initiative led by MIT’s Office of Innovation and Strategy and administered by the MIT Stephen A. Schwarzman College of Computing, issued a call for proposals, inviting researchers from across MIT to submit ideas for innovative projects studying high-impact uses of generative AI models.

The call received 180 submissions from nearly 250 faculty members, spanning all of MIT’s five schools and the college. The overwhelming response across the Institute exemplifies the growing interest in AI and follows in the wake of MIT’s Generative AI Week and call for impact papers. Fifty-five proposals were selected for MGAIC’s inaugural seed grants, with several more selected to be funded by the consortium’s founding company members.

Over 30 funding recipients presented their proposals to the greater MIT community at a kickoff event on May 13.

 » Read More

Photonic processor could streamline 6G wireless signal processing

photonic-processor-could-streamline-6g-wireless-signal-processing

As more connected devices demand an increasing amount of bandwidth for tasks like teleworking and cloud computing, it will become extremely challenging to manage the finite amount of wireless spectrum available for all users to share.

Engineers are employing artificial intelligence to dynamically manage the available wireless spectrum, with an eye toward reducing latency and boosting performance. But most AI methods for classifying and processing wireless signals are power-hungry and can’t operate in real-time.

Now, MIT researchers have developed a novel AI hardware accelerator that is specifically designed for wireless signal processing. Their optical processor performs machine-learning computations at the speed of light, classifying wireless signals in a matter of nanoseconds.

The photonic chip is about 100 times faster than the best digital alternative, while converging to about 95 percent accuracy in signal classification. The new hardware accelerator is also scalable and flexible, so it could be used for a variety of high-performance computing applications.

 » Read More

Bringing meaning into technology deployment

bringing-meaning-into-technology-deployment

In 15 TED Talk-style presentations, MIT faculty recently discussed their pioneering research that incorporates social, ethical, and technical considerations and expertise, each supported by seed grants established by the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative of the MIT Schwarzman College of Computing. The call for proposals last summer was met with nearly 70 applications. A committee with representatives from every MIT school and the college convened to select the winning projects that received up to $100,000 in funding.

“SERC is committed to driving progress at the intersection of computing, ethics, and society. The seed grants are designed to ignite bold, creative thinking around the complex challenges and possibilities in this space,” said Nikos Trichakis, co-associate dean of SERC and the J.C. Penney Professor of Management. “With the MIT Ethics of Computing Research Symposium, we felt it important to not just showcase the breadth and depth of the research that’s shaping the future of ethical computing,

 » Read More