MIT physicists observe key evidence of unconventional superconductivity in magic-angle graphene

mit-physicists-observe-key-evidence-of-unconventional-superconductivity-in-magic-angle-graphene

Superconductors are like the express trains in a metro system. Any electricity that “boards” a superconducting material can zip through it without stopping and losing energy along the way. As such, superconductors are extremely energy efficient, and are used today to power a variety of applications, from MRI machines to particle accelerators.

But these “conventional” superconductors are somewhat limited in terms of uses because they must be brought down to ultra-low temperatures using elaborate cooling systems to keep them in their superconducting state. If superconductors could work at higher, room-like temperatures, they would enable a new world of technologies, from zero-energy-loss power cables and electricity grids to practical quantum computing systems. And so scientists at MIT and elsewhere are studying “unconventional” superconductors — materials that exhibit superconductivity in ways that are different from, and potentially more promising than, today’s superconductors.

In a promising breakthrough, MIT physicists have today reported their observation of new key evidence of unconventional superconductivity in “magic-angle” twisted tri-layer graphene (MATTG) — a material that is made by stacking three atomically-thin sheets of graphene at a specific angle,

 » Read More

Concrete “battery” developed at MIT now packs 10 times the power

concrete-“battery”-developed-at-mit-now-packs-10-times-the-power

Concrete already builds our world, and now it’s one step closer to powering it, too. Made by combining cement, water, ultra-fine carbon black (with nanoscale particles), and electrolytes, electron-conducting carbon concrete (ec3, pronounced “e-c-cubed”) creates a conductive “nanonetwork” inside concrete that could enable everyday structures like walls, sidewalks, and bridges to store and release electrical energy. In other words, the concrete around us could one day double as giant “batteries.”

As MIT researchers report in a new PNAS paper, optimized electrolytes and manufacturing processes have increased the energy storage capacity of the latest ec3 supercapacitors by an order of magnitude. In 2023, storing enough energy to meet the daily needs of the average home would have required about 45 cubic meters of ec3, roughly the amount of concrete used in a typical basement. Now, with the improved electrolyte, that same task can be achieved with about 5 cubic meters,

 » Read More

Study sheds light on graphite’s lifespan in nuclear reactors

study-sheds-light-on-graphite’s-lifespan-in-nuclear-reactors

Graphite is a key structural component in some of the world’s oldest nuclear reactors and many of the next-generation designs being built today. But it also condenses and swells in response to radiation — and the mechanism behind those changes has proven difficult to study.

Now, MIT researchers and collaborators have uncovered a link between properties of graphite and how the material behaves in response to radiation. The findings could lead to more accurate, less destructive ways of predicting the lifespan of graphite materials used in reactors around the world.

“We did some basic science to understand what leads to swelling and, eventually, failure in graphite structures,” says MIT Research Scientist Boris Khaykovich, senior author of the new study. “More research will be needed to put this into practice, but the paper proposes an attractive idea for industry: that you might not need to break hundreds of irradiated samples to understand their failure point.”

Specifically,

 » Read More

Universal nanosensor unlocks the secrets to plant growth

universal-nanosensor-unlocks-the-secrets-to-plant-growth

Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group within the Singapore-MIT Alliance for Research and Technology have developed the world’s first near-infrared fluorescent nanosensor capable of real-time, nondestructive, and species-agnostic detection of indole-3-acetic acid (IAA) — the primary bioactive auxin hormone that controls the way plants develop, grow, and respond to stress.

Auxins, particularly IAA, play a central role in regulating key plant processes such as cell division, elongation, root and shoot development, and response to environmental cues like light, heat, and drought. External factors like light affect how auxin moves within the plant, temperature influences how much is produced, and a lack of water can disrupt hormone balance. When plants cannot effectively regulate auxins, they may not grow well, adapt to changing conditions, or produce as much food. 

Existing IAA detection methods, such as liquid chromatography, require taking plant samples from the plant — which harms or removes part of it.

 » Read More

MIT physicists discover a new type of superconductor that’s also a magnet

mit-physicists-discover-a-new-type-of-superconductor-that’s-also-a-magnet

Magnets and superconductors go together like oil and water — or so scientists have thought. But a new finding by MIT physicists is challenging this century-old assumption.

In a paper appearing today in the journal Nature, the physicists report that they have discovered a “chiral superconductor” — a material that conducts electricity without resistance, and also, paradoxically, is intrinsically magnetic. What’s more, they observed this exotic superconductivity in a surprisingly ordinary material: graphite, the primary material in pencil lead.

Graphite is made from many layers of graphene — atomically thin, lattice-like sheets of carbon atoms — that are stacked together and can easily flake off when pressure is applied, as when pressing down to write on a piece of paper. A single flake of graphite can contain several million sheets of graphene, which are normally stacked such that every other layer aligns.

 » Read More