Darcy McRose and Mehtaab Sawhney ’20, PhD ’24 named 2025 Packard Fellows for Science and Engineering

darcy-mcrose-and-mehtaab-sawhney-’20,-phd-’24-named-2025-packard-fellows-for-science-and-engineering

The David and Lucile Packard Foundation has announced that two MIT affiliates have been named 2025 Packard Fellows for Science and EngineeringDarcy McRose, the Thomas D. and Virginia W. Cabot Career Development Assistant Professor in the MIT Department of Civil and Environmental Engineering, has been honored, along with Mehtaab Sawhney ’20, PhD ’24, a graduate of the Department of Mathematics who is now at Columbia University. 

The honorees are among 20 junior faculty named among the nation’s most innovative early-career scientists and engineers. Each Packard Fellow receives an unrestricted research grant of $875,000 over five years to support their pursuit of pioneering research and bold new ideas.

“I’m incredibly grateful and honored to be awarded a Packard Fellowship,” says McRose. “It will allow us to continue our work exploring how small molecules control microbial communities in soils and on plant roots,

 » Read More

Accounting for uncertainty to help engineers design complex systems

accounting-for-uncertainty-to-help-engineers-design-complex-systems

Designing a complex electronic device like a delivery drone involves juggling many choices, such as selecting motors and batteries that minimize cost while maximizing the payload the drone can carry or the distance it can travel.

Unraveling that conundrum is no easy task, but what happens if the designers don’t know the exact specifications of each battery and motor? On top of that, the real-world performance of these components will likely be affected by unpredictable factors, like changing weather along the drone’s route.

MIT researchers developed a new framework that helps engineers design complex systems in a way that explicitly accounts for such uncertainty. The framework allows them to model the performance tradeoffs of a device with many interconnected parts, each of which could behave in unpredictable ways.

Their technique captures the likelihood of many outcomes and tradeoffs, giving designers more information than many existing approaches which,

 » Read More

Concrete “battery” developed at MIT now packs 10 times the power

concrete-“battery”-developed-at-mit-now-packs-10-times-the-power

Concrete already builds our world, and now it’s one step closer to powering it, too. Made by combining cement, water, ultra-fine carbon black (with nanoscale particles), and electrolytes, electron-conducting carbon concrete (ec3, pronounced “e-c-cubed”) creates a conductive “nanonetwork” inside concrete that could enable everyday structures like walls, sidewalks, and bridges to store and release electrical energy. In other words, the concrete around us could one day double as giant “batteries.”

As MIT researchers report in a new PNAS paper, optimized electrolytes and manufacturing processes have increased the energy storage capacity of the latest ec3 supercapacitors by an order of magnitude. In 2023, storing enough energy to meet the daily needs of the average home would have required about 45 cubic meters of ec3, roughly the amount of concrete used in a typical basement. Now, with the improved electrolyte, that same task can be achieved with about 5 cubic meters,

 » Read More

Technique makes complex 3D printed parts more reliable

technique-makes-complex-3d-printed-parts-more-reliable

People are increasingly turning to software to design complex material structures like airplane wings and medical implants. But as design models become more capable, our fabrication techniques haven’t kept up. Even 3D printers struggle to reliably produce the precise designs created by algorithms. The problem has led to a disconnect between the ways a material is expected to perform and how it actually works.

Now, MIT researchers have created a way for models to account for 3D printing’s limitations during the design process. In experiments, they showed their approach could be used to make materials that perform much more closely to the way they’re intended to.

“If you don’t account for these limitations, printers can either over- or under-deposit material by quite a lot, so your part becomes heavier or lighter than intended. It can also over- or underestimate the material performance significantly,” says Gilbert W.

 » Read More

Eco-driving measures could significantly reduce vehicle emissions

eco-driving-measures-could-significantly-reduce-vehicle-emissions

Any motorist who has ever waited through multiple cycles for a traffic light to turn green knows how annoying signalized intersections can be. But sitting at intersections isn’t just a drag on drivers’ patience — unproductive vehicle idling could contribute as much as 15 percent of the carbon dioxide emissions from U.S. land transportation.

A large-scale modeling study led by MIT researchers reveals that eco-driving measures, which can involve dynamically adjusting vehicle speeds to reduce stopping and excessive acceleration, could significantly reduce those CO2 emissions.

Using a powerful artificial intelligence method called deep reinforcement learning, the researchers conducted an in-depth impact assessment of the factors affecting vehicle emissions in three major U.S. cities.

Their analysis indicates that fully adopting eco-driving measures could cut annual city-wide intersection carbon emissions by 11 to 22 percent, without slowing traffic throughput or affecting vehicle and traffic safety.

Even if only 10 percent of vehicles on the road employ eco-driving,

 » Read More

Why animals are a critical part of forest carbon absorption

why-animals-are-a-critical-part-of-forest-carbon-absorption

A lot of attention has been paid to how climate change can drive biodiversity loss. Now, MIT researchers have shown the reverse is also true: Reductions in biodiversity can jeopardize one of Earth’s most powerful levers for mitigating climate change.

In a paper published in PNAS, the researchers showed that following deforestation, naturally-regrowing tropical forests, with healthy populations of seed-dispersing animals, can absorb up to four times more carbon than similar forests with fewer seed-dispersing animals.

Because tropical forests are currently Earth’s largest land-based carbon sink, the findings improve our understanding of a potent tool to fight climate change.

“The results underscore the importance of animals in maintaining healthy, carbon-rich tropical forests,” says Evan Fricke, a research scientist in the MIT Department of Civil and Environmental Engineering and the lead author of the new study. “When seed-dispersing animals decline,

 » Read More

Unpacking the bias of large language models

unpacking-the-bias-of-large-language-models

Research has shown that large language models (LLMs) tend to overemphasize information at the beginning and end of a document or conversation, while neglecting the middle.

This “position bias” means that, if a lawyer is using an LLM-powered virtual assistant to retrieve a certain phrase in a 30-page affidavit, the LLM is more likely to find the right text if it is on the initial or final pages.

MIT researchers have discovered the mechanism behind this phenomenon.

They created a theoretical framework to study how information flows through the machine-learning architecture that forms the backbone of LLMs. They found that certain design choices which control how the model processes input data can cause position bias.

Their experiments revealed that model architectures, particularly those affecting how information is spread across input words within the model, can give rise to or intensify position bias,

 » Read More

“Cold spray” 3D printing technique proves effective for on-site bridge repair

“cold-spray”-3d-printing-technique-proves-effective-for-on-site-bridge-repair

More than half of the nation’s 623,218 bridges are experiencing significant deterioration. Through an in-field case study conducted in western Massachusetts, a team led by the University of Massachusetts at Amherst in collaboration with researchers from the MIT Department of Mechanical Engineering (MechE) has just successfully demonstrated that 3D printing may provide a cost-effective, minimally disruptive solution.

“Anytime you drive, you go under or over a corroded bridge,” says Simos Gerasimidis, associate professor of civil and environmental engineering at UMass Amherst and former visiting professor in the Department of Civil and Environmental Engineering at MIT, in a press release. “They are everywhere. It’s impossible to avoid, and their condition often shows significant deterioration. We know the numbers.”

The numbers, according to the American Society of Civil Engineers’ 2025 Report Card for America’s Infrastructure, are staggering: Across the United States, 49.1 percent of the nation’s 623,218 bridges are in “fair” condition and 6.8 percent are in “poor” condition.

 » Read More

AI stirs up the recipe for concrete in MIT study

ai-stirs-up-the-recipe-for-concrete-in-mit-study

For weeks, the whiteboard in the lab was crowded with scribbles, diagrams, and chemical formulas. A research team across the Olivetti Group and the MIT Concrete Sustainability Hub (CSHub) was working intensely on a key problem: How can we reduce the amount of cement in concrete to save on costs and emissions? 

The question was certainly not new; materials like fly ash, a byproduct of coal production, and slag, a byproduct of steelmaking, have long been used to replace some of the cement in concrete mixes. However, the demand for these products is outpacing supply as industry looks to reduce its climate impacts by expanding their use, making the search for alternatives urgent. The challenge that the team discovered wasn’t a lack of candidates; the problem was that there were too many to sort through.

On May 17, the team, led by postdoc Soroush Mahjoubi, published an open-access paper in Nature’s Communications Materials outlining their solution.

 » Read More

A new technology for extending the shelf life of produce

a-new-technology-for-extending-the-shelf-life-of-produce

We’ve all felt the sting of guilt when fruit and vegetables go bad before we could eat them. Now, researchers from MIT and the Singapore-MIT Alliance for Research and Technology (SMART) have shown they can extend the shelf life of harvested plants by injecting them with melatonin using biodegradable microneedles.

That’s a big deal because the problem of food waste goes way beyond our salads. More than 30 percent of the world’s food is lost after it’s harvested — enough to feed more than 1 billion people. Refrigeration is the most common way to preserve foods, but it requires energy and infrastructure that many regions of the world can’t afford or lack access to.

The researchers believe their system could offer an alternative or complement to refrigeration. Central to their approach are patches of silk microneedles. The microneedles can get through the tough, waxy skin of plants without causing a stress response,

 » Read More