Robotic probe quickly measures key properties of new materials

robotic-probe-quickly-measures-key-properties-of-new-materials

Scientists are striving to discover new semiconductor materials that could boost the efficiency of solar cells and other electronics. But the pace of innovation is bottlenecked by the speed at which researchers can manually measure important material properties.

A fully autonomous robotic system developed by MIT researchers could speed things up.

Their system utilizes a robotic probe to measure an important electrical property known as photoconductance, which is how electrically responsive a material is to the presence of light.

The researchers inject materials-science-domain knowledge from human experts into the machine-learning model that guides the robot’s decision making. This enables the robot to identify the best places to contact a material with the probe to gain the most information about its photoconductance, while a specialized planning procedure finds the fastest way to move between contact points.

During a 24-hour test, the fully autonomous robotic probe took more than 125 unique measurements per hour,

 » Read More

Have a damaged painting? Restore it in just hours with an AI-generated “mask”

have-a-damaged-painting?-restore-it-in-just-hours-with-an-ai-generated-“mask”

Art restoration takes steady hands and a discerning eye. For centuries, conservators have restored paintings by identifying areas needing repair, then mixing an exact shade to fill in one area at a time. Often, a painting can have thousands of tiny regions requiring individual attention. Restoring a single painting can take anywhere from a few weeks to over a decade.

In recent years, digital restoration tools have opened a route to creating virtual representations of original, restored works. These tools apply techniques of computer vision, image recognition, and color matching, to generate a “digitally restored” version of a painting relatively quickly.

Still, there has been no way to translate digital restorations directly onto an original work, until now. In a paper appearing today in the journal Nature, Alex Kachkine, a mechanical engineering graduate student at MIT, presents a new method he’s developed to physically apply a digital restoration directly onto an original painting.

 » Read More

Animation technique simulates the motion of squishy objects

Animators could create more realistic bouncy, stretchy, and squishy characters for movies and video games thanks to a new simulation method developed by researchers at MIT.

Their approach allows animators to simulate rubbery and elastic materials in a way that preserves the physical properties of the material and avoids pitfalls like instability.

The technique simulates elastic objects for animation and other applications, with improved reliability compared to other methods. In comparison, many existing simulation techniques can produce elastic animations that become erratic or sluggish or can even break down entirely.

To achieve this improvement, the MIT researchers uncovered a hidden mathematical structure in equations that capture how elastic materials deform on a computer. By leveraging this property, known as convexity, they designed a method that consistently produces accurate, physically faithful simulations.

Wiggly gummy bears » Read More

Hybrid AI model crafts smooth, high-quality videos in seconds

hybrid-ai-model-crafts-smooth,-high-quality-videos-in-seconds

What would a behind-the-scenes look at a video generated by an artificial intelligence model be like? You might think the process is similar to stop-motion animation, where many images are created and stitched together, but that’s not quite the case for “diffusion models” like OpenAl’s SORA and Google’s VEO 2.

Instead of producing a video frame-by-frame (or “autoregressively”), these systems process the entire sequence at once. The resulting clip is often photorealistic, but the process is slow and doesn’t allow for on-the-fly changes. 

Scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and Adobe Research have now developed a hybrid approach, called “CausVid,” to create videos in seconds. Much like a quick-witted student learning from a well-versed teacher, a full-sequence diffusion model trains an autoregressive system to swiftly predict the next frame while ensuring high quality and consistency. CausVid’s student model can then generate clips from a simple text prompt,

 » Read More

Ping pong bot returns shots with high-speed precision

ping-pong-bot-returns-shots-with-high-speed-precision

MIT engineers are getting in on the robotic ping pong game with a powerful, lightweight design that returns shots with high-speed precision.

The new table tennis bot comprises a multijointed robotic arm that is fixed to one end of a ping pong table and wields a standard ping pong paddle. Aided by several high-speed cameras and a high-bandwidth predictive control system, the robot quickly estimates the speed and trajectory of an incoming ball and executes one of several swing types — loop, drive, or chop — to precisely hit the ball to a desired location on the table with various types of spin.

In tests, the engineers threw 150 balls at the robot, one after the other, from across the ping pong table. The bot successfully returned the balls with a hit rate of about 88 percent across all three swing types. The robot’s strike speed approaches the top return speeds of human players and is faster than that of other robotic table tennis designs.

 » Read More

Robotic system zeroes in on objects most relevant for helping humans

robotic-system-zeroes-in-on-objects-most-relevant-for-helping-humans

For a robot, the real world is a lot to take in. Making sense of every data point in a scene can take a huge amount of computational effort and time. Using that information to then decide how to best help a human is an even thornier exercise.

Now, MIT roboticists have a way to cut through the data noise, to help robots focus on the features in a scene that are most relevant for assisting humans.

Their approach, which they aptly dub “Relevance,” enables a robot to use cues in a scene, such as audio and visual information, to determine a human’s objective and then quickly identify the objects that are most likely to be relevant in fulfilling that objective. The robot then carries out a set of maneuvers to safely offer the relevant objects or actions to the human.

The researchers demonstrated the approach with an experiment that simulated a conference breakfast buffet.

 » Read More