New lightweight polymer film can prevent corrosion

new-lightweight-polymer-film-can-prevent-corrosion

MIT researchers have developed a lightweight polymer film that is nearly impenetrable to gas molecules, raising the possibility that it could be used as a protective coating to prevent solar cells and other infrastructure from corrosion, and to slow the aging of packaged food and medicines.

The polymer, which can be applied as a film mere nanometers thick, completely repels nitrogen and other gases, as far as can be detected by laboratory equipment, the researchers found. That degree of impermeability has never been seen before in any polymer, and rivals the impermeability of molecularly-thin crystalline materials such as graphene.

“Our polymer is quite unusual. It’s obviously produced from a solution-phase polymerization reaction, but the product behaves like graphene, which is gas-impermeable because it’s a perfect crystal. However, when you examine this material, one would never confuse it with a perfect crystal,” says Michael Strano, the Carbon P.

 » Read More

With a new molecule-based method, physicists peer inside an atom’s nucleus

with-a-new-molecule-based-method,-physicists-peer-inside-an-atom’s-nucleus

Physicists at MIT have developed a new way to probe inside an atom’s nucleus, using the atom’s own electrons as “messengers” within a molecule.

In a study appearing today in the journal Science, the physicists precisely measured the energy of electrons whizzing around a radium atom that had been paired with a fluoride atom to make a molecule of radium monofluoride. They used the environments within molecules as a sort of microscopic particle collider, which contained the radium atom’s electrons and encouraged them to briefly penetrate the atom’s nucleus.

Typically, experiments to probe the inside of atomic nuclei involve massive, kilometers-long facilities that accelerate beams of electrons to speeds fast enough to collide with and break apart nuclei. The team’s new molecule-based method offers a table-top alternative to directly probe the inside of an atom’s nucleus.

Within molecules of radium monofluoride,

 » Read More

MIT engineers develop a magnetic transistor for more energy-efficient electronics

mit-engineers-develop-a-magnetic-transistor-for-more-energy-efficient-electronics

Transistors, the building blocks of modern electronics, are typically made of silicon. Because it’s a semiconductor, this material can control the flow of electricity in a circuit. But silicon has fundamental physical limits that restrict how compact and energy-efficient a transistor can be.

MIT researchers have now replaced silicon with a magnetic semiconductor, creating a magnetic transistor that could enable smaller, faster, and more energy-efficient circuits. The material’s magnetism strongly influences its electronic behavior, leading to more efficient control of the flow of electricity. 

The team used a novel magnetic material and an optimization process that reduces the material’s defects, which boosts the transistor’s performance.

The material’s unique magnetic properties also allow for transistors with built-in memory, which would simplify circuit design and unlock new applications for high-performance electronics.

“People have known about magnets for thousands of years, but there are very limited ways to incorporate magnetism into electronics.

 » Read More

Could a primordial black hole’s last burst explain a mysteriously energetic neutrino?

could-a-primordial-black-hole’s-last-burst-explain-a-mysteriously-energetic-neutrino?

The last gasp of a primordial black hole may be the source of the highest-energy “ghost particle” detected to date, a new MIT study proposes.

In a paper appearing today in Physical Review Letters, MIT physicists put forth a strong theoretical case that a recently observed, highly energetic neutrino may have been the product of a primordial black hole exploding outside our solar system.

Neutrinos are sometimes referred to as ghost particles, for their invisible yet pervasive nature: They are the most abundant particle type in the universe, yet they leave barely a trace. Scientists recently identified signs of a neutrino with the highest energy ever recorded, but the source of such an unusually powerful particle has yet to be confirmed.

The MIT researchers propose that the mysterious neutrino may have come from the inevitable explosion of a primordial black hole.

 » Read More

DOE selects MIT to establish a Center for the Exascale Simulation of Coupled High-Enthalpy Fluid–Solid Interactions

doe-selects-mit-to-establish-a-center-for-the-exascale-simulation-of-coupled-high-enthalpy-fluid–solid-interactions

The U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) recently announced that it has selected MIT to establish a new research center dedicated to advancing the predictive simulation of extreme environments, such as those encountered in hypersonic flight and atmospheric re-entry. The center will be part of the fourth phase of NNSA’s Predictive Science Academic Alliance Program (PSAAP-IV), which supports frontier research advancing the predictive capabilities of high-performance computing for open science and engineering applications relevant to national security mission spaces.

The Center for the Exascale Simulation of Coupled High-Enthalpy Fluid–Solid Interactions (CHEFSI) — a joint effort of the MIT Center for Computational Science and Engineering, the MIT Schwarzman College of Computing, and the MIT Institute for Soldier Nanotechnologies (ISN) — plans to harness cutting-edge exascale supercomputers and next-generation algorithms to simulate with unprecedented detail how extremely hot,

 » Read More

New particle detector passes the “standard candle” test

new-particle-detector-passes-the-“standard-candle”-test

A new and powerful particle detector just passed a critical test in its goal to decipher the ingredients of the early universe.

The sPHENIX detector is the newest experiment at Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC) and is designed to precisely measure products of high-speed particle collisions. From the aftermath, scientists hope to reconstruct the properties of quark-gluon plasma (QGP) — a white-hot soup of subatomic particles known as quarks and gluons that is thought to have sprung into existence in the few microseconds following the Big Bang. Just as quickly, the mysterious plasma disappeared, cooling and combining to form the protons and neutrons that make up today’s ordinary matter.

Now, the sPHENIX detector has made a key measurement that proves it has the precision to help piece together the primordial properties of quark-gluon plasma.

In a paper in the Journal of High Energy Physics,

 » Read More

New method could monitor corrosion and cracking in a nuclear reactor

new-method-could-monitor-corrosion-and-cracking-in-a-nuclear-reactor

MIT researchers have developed a technique that enables real-time, 3D monitoring of corrosion, cracking, and other material failure processes inside a nuclear reactor environment.

This could allow engineers and scientists to design safer nuclear reactors that also deliver higher performance for applications like electricity generation and naval vessel propulsion.

During their experiments, the researchers utilized extremely powerful X-rays to mimic the behavior of neutrons interacting with a material inside a nuclear reactor.

They found that adding a buffer layer of silicon dioxide between the material and its substrate, and keeping the material under the X-ray beam for a longer period of time, improves the stability of the sample. This allows for real-time monitoring of material failure processes.

By reconstructing 3D image data on the structure of a material as it fails, researchers could design more resilient materials that can better withstand the stress caused by irradiation inside a nuclear reactor.

 » Read More

New self-assembling material could be the key to recyclable EV batteries

new-self-assembling-material-could-be-the-key-to-recyclable-ev-batteries

Today’s electric vehicle boom is tomorrow’s mountain of electronic waste. And while myriad efforts are underway to improve battery recycling, many EV batteries still end up in landfills.

A research team from MIT wants to help change that with a new kind of self-assembling battery material that quickly breaks apart when submerged in a simple organic liquid. In a new paper published in Nature Chemistry, the researchers showed the material can work as the electrolyte in a functioning, solid-state battery cell and then revert back to its original molecular components in minutes.

The approach offers an alternative to shredding the battery into a mixed, hard-to-recycle mass. Instead, because the electrolyte serves as the battery’s connecting layer, when the new material returns to its original molecular form, the entire battery disassembles to accelerate the recycling process.

“So far in the battery industry,

 » Read More

Study sheds light on graphite’s lifespan in nuclear reactors

study-sheds-light-on-graphite’s-lifespan-in-nuclear-reactors

Graphite is a key structural component in some of the world’s oldest nuclear reactors and many of the next-generation designs being built today. But it also condenses and swells in response to radiation — and the mechanism behind those changes has proven difficult to study.

Now, MIT researchers and collaborators have uncovered a link between properties of graphite and how the material behaves in response to radiation. The findings could lead to more accurate, less destructive ways of predicting the lifespan of graphite materials used in reactors around the world.

“We did some basic science to understand what leads to swelling and, eventually, failure in graphite structures,” says MIT Research Scientist Boris Khaykovich, senior author of the new study. “More research will be needed to put this into practice, but the paper proposes an attractive idea for industry: that you might not need to break hundreds of irradiated samples to understand their failure point.”

Specifically,

 » Read More

Surprisingly diverse innovations led to dramatically cheaper solar panels

surprisingly-diverse-innovations-led-to-dramatically-cheaper-solar-panels

The cost of solar panels has dropped by more than 99 percent since the 1970s, enabling widespread adoption of photovoltaic systems that convert sunlight into electricity.

A new MIT study drills down on specific innovations that enabled such dramatic cost reductions, revealing that technical advances across a web of diverse research efforts and industries played a pivotal role.

The findings could help renewable energy companies make more effective R&D investment decisions and aid policymakers in identifying areas to prioritize to spur growth in manufacturing and deployment.

The researchers’ modeling approach shows that key innovations often originated outside the solar sector, including advances in semiconductor fabrication, metallurgy, glass manufacturing, oil and gas drilling, construction processes, and even legal domains.

“Our results show just how intricate the process of cost improvement is, and how much scientific and engineering advances, often at a very basic level,

 » Read More