AI maps how a new antibiotic targets gut bacteria

ai-maps-how-a-new-antibiotic-targets-gut-bacteria

For patients with inflammatory bowel disease, antibiotics can be a double-edged sword. The broad-spectrum drugs often prescribed for gut flare-ups can kill helpful microbes alongside harmful ones, sometimes worsening symptoms over time. When fighting gut inflammation, you don’t always want to bring a sledgehammer to a knife fight.

Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and McMaster University have identified a new compound that takes a more targeted approach. The molecule, called enterololin, suppresses a group of bacteria linked to Crohn’s disease flare-ups while leaving the rest of the microbiome largely intact. Using a generative AI model, the team mapped how the compound works, a process that usually takes years but was accelerated here to just months.

“This discovery speaks to a central challenge in antibiotic development,” says Jon Stokes, senior author of a new paper on the work,

 » Read More

How federal research support has helped create life-changing medicines

how-federal-research-support-has-helped-create-life-changing-medicines

Gleevec, a cancer drug first approved for sale in 2001, has dramatically changed the lives of people with chronic myeloid leukemia. This form of cancer was once regarded as very difficult to combat, but survival rates of patients who respond to Gleevec now resemble that of the population at large.

Gleevec is also a medicine developed with the help of federally funded research. That support helped scientists better understand how to create drugs targeting the BCR-ABL oncoprotein, the cancer-causing protein behind chronic myeloid leukemia.

A new study co-authored by MIT researchers quantifies how many such examples of drug development exist. The current administration is proposing a nearly 40 percent budget reduction to the National Institutes of Health (NIH), which sponsors a significant portion of biomedical research. The study finds that over 50 percent of small-molecule drug patents this century cite at least one piece of NIH-backed research that would likely be vulnerable to that potential level of funding change.

 » Read More

New RNA tool to advance cancer and infectious disease research and treatment

new-rna-tool-to-advance-cancer-and-infectious-disease-research-and-treatment

Researchers at the Antimicrobial Resistance (AMR) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, have developed a powerful tool capable of scanning thousands of biological samples to detect transfer ribonucleic acid (tRNA) modifications — tiny chemical changes to RNA molecules that help control how cells grow, adapt to stress, and respond to diseases such as cancer and antibiotic‑resistant infections. This tool opens up new possibilities for science, health care, and industry — from accelerating disease research and enabling more precise diagnostics to guiding the development of more effective medical treatments for diseases such as cancer and antibiotic-resistant infections.

For this study, the SMART AMR team worked in collaboration with researchers at MIT, Nanyang Technological University in Singapore, the University of Florida, the University at Albany in New York, and Lodz University of Technology in Poland.

 » Read More

How AI could speed the development of RNA vaccines and other RNA therapies

how-ai-could-speed-the-development-of-rna-vaccines-and-other-rna-therapies

Using artificial intelligence, MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies.

After training a machine-learning model to analyze thousands of existing delivery particles, the researchers used it to predict new materials that would work even better. The model also enabled the researchers to identify particles that would work well in different types of cells, and to discover ways to incorporate new types of materials into the particles.

“What we did was apply machine-learning tools to help accelerate the identification of optimal ingredient mixtures in lipid nanoparticles to help target a different cell type or help incorporate different materials, much faster than previously was possible,” says Giovanni Traverso, an associate professor of mechanical engineering at MIT, a gastroenterologist at Brigham and Women’s Hospital, and the senior author of the study.

This approach could dramatically speed the process of developing new RNA vaccines,

 » Read More

New machine-learning application to help researchers predict chemical properties

new-machine-learning-application-to-help-researchers-predict-chemical-properties

One of the shared, fundamental goals of most chemistry researchers is the need to predict a molecule’s properties, such as its boiling or melting point. Once researchers can pinpoint that prediction, they’re able to move forward with their work yielding discoveries that lead to medicines, materials, and more. Historically, however, the traditional methods of unveiling these predictions are associated with a significant cost — expending time and wear and tear on equipment, in addition to funds.

Enter a branch of artificial intelligence known as machine learning (ML). ML has lessened the burden of molecule property prediction to a degree, but the advanced tools that most effectively expedite the process — by learning from existing data to make rapid predictions for new molecules — require the user to have a significant level of programming expertise. This creates an accessibility barrier for many chemists, who may not have the significant computational proficiency required to navigate the prediction pipeline. 

 » Read More

Scientists discover compounds that help cells fight a wide range of viruses

scientists-discover-compounds-that-help-cells-fight-a-wide-range-of-viruses

Researchers at MIT and other institutions have identified compounds that can fight off viral infection by activating a defense pathway inside host cells. These compounds, they believe, could be used as antiviral drugs that work against not just one but any kind of virus.

The researchers identified these compounds, which activate a host cell defense system known as the integrated stress response pathway, in a screen of nearly 400,000 molecules. In tests in human cells, the researchers showed that the compounds help cells fend off infection from RSV, herpes virus, and Zika virus. They also proved effective in combating herpes infection in a mouse model.

The research team now plans to test the compounds against additional viruses, in hopes of developing them for eventual clinical trials.

“We’re very excited about this work, which allows us to harness the stress response of the host cells to arrive at a means to identify and develop broad-spectrum antivirals,” says James Collins, the Termeer Professor of Medical Engineering and Science in MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering.

 » Read More