Accounting for uncertainty to help engineers design complex systems

accounting-for-uncertainty-to-help-engineers-design-complex-systems

Designing a complex electronic device like a delivery drone involves juggling many choices, such as selecting motors and batteries that minimize cost while maximizing the payload the drone can carry or the distance it can travel.

Unraveling that conundrum is no easy task, but what happens if the designers don’t know the exact specifications of each battery and motor? On top of that, the real-world performance of these components will likely be affected by unpredictable factors, like changing weather along the drone’s route.

MIT researchers developed a new framework that helps engineers design complex systems in a way that explicitly accounts for such uncertainty. The framework allows them to model the performance tradeoffs of a device with many interconnected parts, each of which could behave in unpredictable ways.

Their technique captures the likelihood of many outcomes and tradeoffs, giving designers more information than many existing approaches which,

 » Read More

Concrete “battery” developed at MIT now packs 10 times the power

concrete-“battery”-developed-at-mit-now-packs-10-times-the-power

Concrete already builds our world, and now it’s one step closer to powering it, too. Made by combining cement, water, ultra-fine carbon black (with nanoscale particles), and electrolytes, electron-conducting carbon concrete (ec3, pronounced “e-c-cubed”) creates a conductive “nanonetwork” inside concrete that could enable everyday structures like walls, sidewalks, and bridges to store and release electrical energy. In other words, the concrete around us could one day double as giant “batteries.”

As MIT researchers report in a new PNAS paper, optimized electrolytes and manufacturing processes have increased the energy storage capacity of the latest ec3 supercapacitors by an order of magnitude. In 2023, storing enough energy to meet the daily needs of the average home would have required about 45 cubic meters of ec3, roughly the amount of concrete used in a typical basement. Now, with the improved electrolyte, that same task can be achieved with about 5 cubic meters,

 » Read More

Lincoln Laboratory reports on airborne threat mitigation for the NYC subway

lincoln-laboratory-reports-on-airborne-threat-mitigation-for-the-nyc-subway

A multiyear program at MIT Lincoln Laboratory to characterize how biological and chemical vapors and aerosols disperse through the New York City subway system is coming to a close. The program, part of the U.S. Department of Homeland Security (DHS) Science and Technology Directorate’s Urban Area Security Initiative, builds on other efforts at Lincoln Laboratory to detect chemical and biological threats, validate air dispersion models, and improve emergency protocols in urban areas in case of an airborne attack. The results of this program will inform the New York Metropolitan Transportation Authority (MTA) on how best to install an efficient, cost-effective system for airborne threat detection and mitigation throughout the subway. On a broader scale, the study will help the national security community understand pragmatic chemical and biological defense options for mass transit, critical facilities, and special events.

Trina Vian from the laboratory’s Counter–Weapons of Mass Destruction (WMD) Systems Group led this project,

 » Read More

“Cold spray” 3D printing technique proves effective for on-site bridge repair

“cold-spray”-3d-printing-technique-proves-effective-for-on-site-bridge-repair

More than half of the nation’s 623,218 bridges are experiencing significant deterioration. Through an in-field case study conducted in western Massachusetts, a team led by the University of Massachusetts at Amherst in collaboration with researchers from the MIT Department of Mechanical Engineering (MechE) has just successfully demonstrated that 3D printing may provide a cost-effective, minimally disruptive solution.

“Anytime you drive, you go under or over a corroded bridge,” says Simos Gerasimidis, associate professor of civil and environmental engineering at UMass Amherst and former visiting professor in the Department of Civil and Environmental Engineering at MIT, in a press release. “They are everywhere. It’s impossible to avoid, and their condition often shows significant deterioration. We know the numbers.”

The numbers, according to the American Society of Civil Engineers’ 2025 Report Card for America’s Infrastructure, are staggering: Across the United States, 49.1 percent of the nation’s 623,218 bridges are in “fair” condition and 6.8 percent are in “poor” condition.

 » Read More

AI stirs up the recipe for concrete in MIT study

ai-stirs-up-the-recipe-for-concrete-in-mit-study

For weeks, the whiteboard in the lab was crowded with scribbles, diagrams, and chemical formulas. A research team across the Olivetti Group and the MIT Concrete Sustainability Hub (CSHub) was working intensely on a key problem: How can we reduce the amount of cement in concrete to save on costs and emissions? 

The question was certainly not new; materials like fly ash, a byproduct of coal production, and slag, a byproduct of steelmaking, have long been used to replace some of the cement in concrete mixes. However, the demand for these products is outpacing supply as industry looks to reduce its climate impacts by expanding their use, making the search for alternatives urgent. The challenge that the team discovered wasn’t a lack of candidates; the problem was that there were too many to sort through.

On May 17, the team, led by postdoc Soroush Mahjoubi, published an open-access paper in Nature’s Communications Materials outlining their solution.

 » Read More

Deploying a practical solution to space debris

deploying-a-practical-solution-to-space-debris

At this moment, there are approximately 35,000 tracked human-generated objects in orbit around Earth. Of these, only about one-third are active payloads: science and communications satellites, research experiments, and other beneficial technology deployments. The rest are categorized as debris — defunct satellites, spent rocket bodies, and the detritus of hundreds of collisions, explosions, planned launch vehicle separations, and other “fragmentation events” that have occurred throughout humanity’s 67 years of space launches. 

The problem of space debris is well documented, and only set to grow in the near term as launch rates increase and fragmentation events escalate accordingly. The clutter of debris — which includes an estimated 1 million objects over 1 centimeter, in addition to the tracked objects — regularly causes damage to satellites, requires the repositioning of the International Space Station, and has the potential to cause catastrophic collisions with increasing frequency. 

To address this issue,

 » Read More

3 Questions: Making the most of limited data to boost pavement performance

3-questions:-making-the-most-of-limited-data-to-boost-pavement-performance

Pavements form the backbone of our built environment. In the United States, almost 2.8 million lane-miles, or about 4.6 million lane-kilometers, are paved. They take us to work or school, take goods to their destinations, and much more.

To secure a more sustainable future, we must take a careful look at the long-term performance and environmental impacts of our pavements. Haoran Li, a postdoc at the MIT Concrete Sustainability Hub and the Department of Civil and Environmental Engineering, is deeply invested in studying how to give stakeholders the information and tools they need to make informed pavement decisions with the future in mind. Here, he discusses life-cycle assessments for pavements as well as research from MIT in addressing pavement sustainability.

Q: What is life-cycle assessment, and why does it matter for pavements?

A: Life-cycle assessment (LCA) is a method that helps us holistically assess the environmental impacts of products and systems throughout their life cycle — everything from the impacts of raw materials to construction,

 » Read More