Adhesive inspired by hitchhiking sucker fish sticks to soft surfaces underwater

adhesive-inspired-by-hitchhiking-sucker-fish-sticks-to-soft-surfaces-underwater

Inspired by a hitchhiking fish that uses a specialized suction organ to latch onto sharks and other marine animals, researchers from MIT and other institutions have designed a mechanical adhesive device that can attach to soft surfaces underwater or in extreme conditions, and remain there for days or weeks.

This device, the researchers showed, can adhere to the lining of the GI tract, whose mucosal layer makes it very difficult to attach any kind of sensor or drug-delivery capsule. Using their new adhesive system, the researchers showed that they could achieve automatic self-adhesion, without motors, to deliver HIV antiviral drugs or RNA to the GI tract, and they could also deploy it as a sensor for gastroesophageal reflux disease (GERD). The device can also be attached to a swimming fish to monitor aquatic environments.

The design is based on the research team’s extensive studies of the remora’s sucker-like disc.

 » Read More

Robotic probe quickly measures key properties of new materials

robotic-probe-quickly-measures-key-properties-of-new-materials

Scientists are striving to discover new semiconductor materials that could boost the efficiency of solar cells and other electronics. But the pace of innovation is bottlenecked by the speed at which researchers can manually measure important material properties.

A fully autonomous robotic system developed by MIT researchers could speed things up.

Their system utilizes a robotic probe to measure an important electrical property known as photoconductance, which is how electrically responsive a material is to the presence of light.

The researchers inject materials-science-domain knowledge from human experts into the machine-learning model that guides the robot’s decision making. This enables the robot to identify the best places to contact a material with the probe to gain the most information about its photoconductance, while a specialized planning procedure finds the fastest way to move between contact points.

During a 24-hour test, the fully autonomous robotic probe took more than 125 unique measurements per hour,

 » Read More

Four from MIT named 2025 Goldwater Scholars

four-from-mit-named-2025-goldwater-scholars

Four MIT rising seniors have been selected to receive a 2025 Barry Goldwater Scholarship, including Avani Ahuja and Jacqueline Prawira in the School of Engineering and Julianna Lian and Alex Tang from the School of Science. An estimated 5,000 college sophomores and juniors from across the United States were nominated for the scholarships, of whom only 441 were selected.

The Goldwater Scholarships have been conferred since 1989 by the Barry Goldwater Scholarship and Excellence in Education Foundation. These scholarships have supported undergraduates who go on to become leading scientists, engineers, and mathematicians in their respective fields.

Avani Ahuja, a mechanical engineering and electrical engineering major, conducts research in the Conformable Decoders group, where she is focused on developing a “wearable conformable breast ultrasound patch” that makes ultrasounds for breast cancer more accessible.

“Doing research in the Media Lab has had a huge impact on me,

 » Read More

MIT engineers uncover a surprising reason why tissues are flexible or rigid

mit-engineers-uncover-a-surprising-reason-why-tissues-are-flexible-or-rigid

Water makes up around 60 percent of the human body. More than half of this water sloshes around inside the cells that make up organs and tissues. Much of the remaining water flows in the nooks and crannies between cells, much like seawater between grains of sand.

Now, MIT engineers have found that this “intercellular” fluid plays a major role in how tissues respond when squeezed, pressed, or physically deformed. Their findings could help scientists understand how cells, tissues, and organs physically adapt to conditions such as aging, cancer, diabetes, and certain neuromuscular diseases.

In a paper appearing today in Nature Physics, the researchers show that when a tissue is pressed or squeezed, it is more compliant and relaxes more quickly when the fluid between its cells flows easily. When the cells are packed together and there is less room for intercellular flow,

 » Read More

“Cold spray” 3D printing technique proves effective for on-site bridge repair

“cold-spray”-3d-printing-technique-proves-effective-for-on-site-bridge-repair

More than half of the nation’s 623,218 bridges are experiencing significant deterioration. Through an in-field case study conducted in western Massachusetts, a team led by the University of Massachusetts at Amherst in collaboration with researchers from the MIT Department of Mechanical Engineering (MechE) has just successfully demonstrated that 3D printing may provide a cost-effective, minimally disruptive solution.

“Anytime you drive, you go under or over a corroded bridge,” says Simos Gerasimidis, associate professor of civil and environmental engineering at UMass Amherst and former visiting professor in the Department of Civil and Environmental Engineering at MIT, in a press release. “They are everywhere. It’s impossible to avoid, and their condition often shows significant deterioration. We know the numbers.”

The numbers, according to the American Society of Civil Engineers’ 2025 Report Card for America’s Infrastructure, are staggering: Across the United States, 49.1 percent of the nation’s 623,218 bridges are in “fair” condition and 6.8 percent are in “poor” condition.

 » Read More

Have a damaged painting? Restore it in just hours with an AI-generated “mask”

have-a-damaged-painting?-restore-it-in-just-hours-with-an-ai-generated-“mask”

Art restoration takes steady hands and a discerning eye. For centuries, conservators have restored paintings by identifying areas needing repair, then mixing an exact shade to fill in one area at a time. Often, a painting can have thousands of tiny regions requiring individual attention. Restoring a single painting can take anywhere from a few weeks to over a decade.

In recent years, digital restoration tools have opened a route to creating virtual representations of original, restored works. These tools apply techniques of computer vision, image recognition, and color matching, to generate a “digitally restored” version of a painting relatively quickly.

Still, there has been no way to translate digital restorations directly onto an original work, until now. In a paper appearing today in the journal Nature, Alex Kachkine, a mechanical engineering graduate student at MIT, presents a new method he’s developed to physically apply a digital restoration directly onto an original painting.

 » Read More

Study shows making hydrogen with soda cans and seawater is scalable and sustainable

study-shows-making-hydrogen-with-soda-cans-and-seawater-is-scalable-and-sustainable

Hydrogen has the potential to be a climate-friendly fuel since it doesn’t release carbon dioxide when used as an energy source. Currently, however, most methods for producing hydrogen involve fossil fuels, making hydrogen less of a “green” fuel over its entire life cycle.

A new process developed by MIT engineers could significantly shrink the carbon footprint associated with making hydrogen.

Last year, the team reported that they could produce hydrogen gas by combining seawater, recycled soda cans, and caffeine. The question then was whether the benchtop process could be applied at an industrial scale, and at what environmental cost.

Now, the researchers have carried out a “cradle-to-grave” life cycle assessment, taking into account every step in the process at an industrial scale. For instance, the team calculated the carbon emissions associated with acquiring and processing aluminum, reacting it with seawater to produce hydrogen,

 » Read More

Is gravity quantum?

is-gravity-quantum?

One of the most profound open questions in modern physics is: “Is gravity quantum?” 

The other fundamental forces — electromagnetic, weak, and strong — have all been successfully described, but no complete and consistent quantum theory of gravity yet exists.  

“Theoretical physicists have proposed many possible scenarios, from gravity being inherently classical to fully quantum, but the debate remains unresolved because we’ve never had a clear way to test gravity’s quantum nature in the lab,” says Dongchel Shin, a PhD candidate in the MIT Department of Mechanical Engineering (MechE). “The key to answering this lies in preparing mechanical systems that are massive enough to feel gravity, yet quiet enough — quantum enough — to reveal how gravity interacts with them.”

Shin, who is also a MathWorks Fellow, researches quantum and precision metrology platforms that probe fundamental physics and are designed to pave the way for future industrial technology.

 » Read More

Ping pong bot returns shots with high-speed precision

ping-pong-bot-returns-shots-with-high-speed-precision

MIT engineers are getting in on the robotic ping pong game with a powerful, lightweight design that returns shots with high-speed precision.

The new table tennis bot comprises a multijointed robotic arm that is fixed to one end of a ping pong table and wields a standard ping pong paddle. Aided by several high-speed cameras and a high-bandwidth predictive control system, the robot quickly estimates the speed and trajectory of an incoming ball and executes one of several swing types — loop, drive, or chop — to precisely hit the ball to a desired location on the table with various types of spin.

In tests, the engineers threw 150 balls at the robot, one after the other, from across the ping pong table. The bot successfully returned the balls with a hit rate of about 88 percent across all three swing types. The robot’s strike speed approaches the top return speeds of human players and is faster than that of other robotic table tennis designs.

 » Read More

MIT engineering students crack egg dilemma, finding sideways is stronger

mit-engineering-students-crack-egg-dilemma,-finding-sideways-is-stronger

It’s been a scientific truth so universally acknowledged that it’s taught in classrooms and repeated in pop-science videos: An egg is strongest when dropped vertically, on its ends. But when MIT engineers actually put this assumption to the test, they cracked open a surprising revelation. 

Their experiments revealed that eggs dropped on their sides — not their tips — are far more resilient, thanks to a clever physics trick: Sideways eggs bend like shock absorbers, trading stiffness for superior energy absorption. Their open-access findings, published today in Communications Physics, don’t just rewrite the rules of the classic egg drop challenge — they’re a lesson in intellectual humility and curiosity. Even “settled” science can yield surprises when approached with rigor and an open mind.

At first glance, an eggshell may seem fragile, but its strength is a marvel of physics. Crack an egg on its side for your morning omelet and it breaks easily.

 » Read More