Particles that enhance mRNA delivery could reduce vaccine dosage and costs

particles-that-enhance-mrna-delivery-could-reduce-vaccine-dosage-and-costs

A new delivery particle developed at MIT could make mRNA vaccines more effective and potentially lower the cost per vaccine dose.

In studies in mice, the researchers showed that an mRNA influenza vaccine delivered with their new lipid nanoparticle could generate the same immune response as mRNA delivered by nanoparticles made with FDA-approved materials, but at around 1/100 the dose.

“One of the challenges with mRNA vaccines is the cost,” says Daniel Anderson, a professor in MIT’s Department of Chemical Engineering and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science (IMES). “When you think about the cost of making a vaccine that could be distributed widely, it can really add up. Our goal has been to try to make nanoparticles that can give you a safe and effective vaccine response but at a much lower dose.”

While the researchers used their particles to deliver a flu vaccine,

 » Read More

A new patch could help to heal the heart

a-new-patch-could-help-to-heal-the-heart

MIT engineers have developed a flexible drug-delivery patch that can be placed on the heart after a heart attack to help promote healing and regeneration of cardiac tissue.

The new patch is designed to carry several different drugs that can be released at different times, on a pre-programmed schedule. In a study of rats, the researchers showed that this treatment reduced the amount of damaged heart tissue by 50 percent and significantly improved cardiac function.

If approved for use in humans, this type of patch could help heart attack victims recover more of their cardiac function than is now possible, the researchers say.

“When someone suffers a major heart attack, the damaged cardiac tissue doesn’t regenerate effectively, leading to a permanent loss of heart function. The tissue that was damaged doesn’t recover,” says Ana Jaklenec, a principal investigator at MIT’s Koch Institute for Integrative Cancer Research.

 » Read More

AI maps how a new antibiotic targets gut bacteria

ai-maps-how-a-new-antibiotic-targets-gut-bacteria

For patients with inflammatory bowel disease, antibiotics can be a double-edged sword. The broad-spectrum drugs often prescribed for gut flare-ups can kill helpful microbes alongside harmful ones, sometimes worsening symptoms over time. When fighting gut inflammation, you don’t always want to bring a sledgehammer to a knife fight.

Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and McMaster University have identified a new compound that takes a more targeted approach. The molecule, called enterololin, suppresses a group of bacteria linked to Crohn’s disease flare-ups while leaving the rest of the microbiome largely intact. Using a generative AI model, the team mapped how the compound works, a process that usually takes years but was accelerated here to just months.

“This discovery speaks to a central challenge in antibiotic development,” says Jon Stokes, senior author of a new paper on the work,

 » Read More

How federal research support has helped create life-changing medicines

how-federal-research-support-has-helped-create-life-changing-medicines

Gleevec, a cancer drug first approved for sale in 2001, has dramatically changed the lives of people with chronic myeloid leukemia. This form of cancer was once regarded as very difficult to combat, but survival rates of patients who respond to Gleevec now resemble that of the population at large.

Gleevec is also a medicine developed with the help of federally funded research. That support helped scientists better understand how to create drugs targeting the BCR-ABL oncoprotein, the cancer-causing protein behind chronic myeloid leukemia.

A new study co-authored by MIT researchers quantifies how many such examples of drug development exist. The current administration is proposing a nearly 40 percent budget reduction to the National Institutes of Health (NIH), which sponsors a significant portion of biomedical research. The study finds that over 50 percent of small-molecule drug patents this century cite at least one piece of NIH-backed research that would likely be vulnerable to that potential level of funding change.

 » Read More

New RNA tool to advance cancer and infectious disease research and treatment

new-rna-tool-to-advance-cancer-and-infectious-disease-research-and-treatment

Researchers at the Antimicrobial Resistance (AMR) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, have developed a powerful tool capable of scanning thousands of biological samples to detect transfer ribonucleic acid (tRNA) modifications — tiny chemical changes to RNA molecules that help control how cells grow, adapt to stress, and respond to diseases such as cancer and antibiotic‑resistant infections. This tool opens up new possibilities for science, health care, and industry — from accelerating disease research and enabling more precise diagnostics to guiding the development of more effective medical treatments for diseases such as cancer and antibiotic-resistant infections.

For this study, the SMART AMR team worked in collaboration with researchers at MIT, Nanyang Technological University in Singapore, the University of Florida, the University at Albany in New York, and Lodz University of Technology in Poland.

 » Read More

Technology originating at MIT leads to approved bladder cancer treatment

technology-originating-at-mit-leads-to-approved-bladder-cancer-treatment

At MIT, a few scribbles on a whiteboard can turn into a potentially transformational cancer treatment.

This scenario came to fruition this week when the U.S. Food and Drug Administration approved a system for treating an aggressive form of bladder cancer. More than a decade ago, the system started as an idea in the lab of MIT Professor Michael Cima at the Koch Institute for Integrative Cancer Research, enabled by funding from the National Institutes of Health and MIT’s Deshpande Center.

The work that started with a few researchers at MIT turned into a startup, TARIS Biomedical LLC, that was co-founded by Cima and David H. Koch Institute Professor Robert Langer, and acquired by Johnson & Johnson in 2019. In developing the core concept of a device for local drug delivery to the bladder — which represents a new paradigm in bladder cancer treatment — the MIT team approached drug delivery like an engineering problem.

 » Read More

MIT researchers develop AI tool to improve flu vaccine strain selection

mit-researchers-develop-ai-tool-to-improve-flu-vaccine-strain-selection

Every year, global health experts are faced with a high-stakes decision: Which influenza strains should go into the next seasonal vaccine? The choice must be made months in advance, long before flu season even begins, and it can often feel like a race against the clock. If the selected strains match those that circulate, the vaccine will likely be highly effective. But if the prediction is off, protection can drop significantly, leading to (potentially preventable) illness and strain on health care systems.

This challenge became even more familiar to scientists in the years during the Covid-19 pandemic. Think back to the time (and time and time again), when new variants emerged just as vaccines were being rolled out. Influenza behaves like a similar, rowdy cousin, mutating constantly and unpredictably. That makes it hard to stay ahead, and therefore harder to design vaccines that remain protective.

To reduce this uncertainty,

 » Read More

Using generative AI, researchers design compounds that can kill drug-resistant bacteria

using-generative-ai,-researchers-design-compounds-that-can-kill-drug-resistant-bacteria

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA).

Using generative AI algorithms, the research team designed more than 36 million possible compounds and computationally screened them for antimicrobial properties. The top candidates they discovered are structurally distinct from any existing antibiotics, and they appear to work by novel mechanisms that disrupt bacterial cell membranes.

This approach allowed the researchers to generate and evaluate theoretical compounds that have never been seen before — a strategy that they now hope to apply to identify and design compounds with activity against other species of bacteria.

“We’re excited about the new possibilities that this project opens up for antibiotics development. Our work shows the power of AI from a drug design standpoint, and enables us to exploit much larger chemical spaces that were previously inaccessible,” says James Collins, the Termeer Professor of Medical Engineering and Science in MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering.

 » Read More

Adhesive inspired by hitchhiking sucker fish sticks to soft surfaces underwater

adhesive-inspired-by-hitchhiking-sucker-fish-sticks-to-soft-surfaces-underwater

Inspired by a hitchhiking fish that uses a specialized suction organ to latch onto sharks and other marine animals, researchers from MIT and other institutions have designed a mechanical adhesive device that can attach to soft surfaces underwater or in extreme conditions, and remain there for days or weeks.

This device, the researchers showed, can adhere to the lining of the GI tract, whose mucosal layer makes it very difficult to attach any kind of sensor or drug-delivery capsule. Using their new adhesive system, the researchers showed that they could achieve automatic self-adhesion, without motors, to deliver HIV antiviral drugs or RNA to the GI tract, and they could also deploy it as a sensor for gastroesophageal reflux disease (GERD). The device can also be attached to a swimming fish to monitor aquatic environments.

The design is based on the research team’s extensive studies of the remora’s sucker-like disc.

 » Read More

How to more efficiently study complex treatment interactions

how-to-more-efficiently-study-complex-treatment-interactions

MIT researchers have developed a new theoretical framework for studying the mechanisms of treatment interactions. Their approach allows scientists to efficiently estimate how combinations of treatments will affect a group of units, such as cells, enabling a researcher to perform fewer costly experiments while gathering more accurate data.

As an example, to study how interconnected genes affect cancer cell growth, a biologist might need to use a combination of treatments to target multiple genes at once. But because there could be billions of potential combinations for each round of the experiment, choosing a subset of combinations to test might bias the data their experiment generates. 

In contrast, the new framework considers the scenario where the user can efficiently design an unbiased experiment by assigning all treatments in parallel, and can control the outcome by adjusting the rate of each treatment.

The MIT researchers theoretically proved a near-optimal strategy in this framework and performed a series of simulations to test it in a multiround experiment.

 » Read More