How the brain solves complicated problems

how-the-brain-solves-complicated-problems

The human brain is very good at solving complicated problems. One reason for that is that humans can break problems apart into manageable subtasks that are easy to solve one at a time.

This allows us to complete a daily task like going out for coffee by breaking it into steps: getting out of our office building, navigating to the coffee shop, and once there, obtaining the coffee. This strategy helps us to handle obstacles easily. For example, if the elevator is broken, we can revise how we get out of the building without changing the other steps.

While there is a great deal of behavioral evidence demonstrating humans’ skill at these complicated tasks, it has been difficult to devise experimental scenarios that allow precise characterization of the computational strategies we use to solve problems.

In a new study, MIT researchers have successfully modeled how people deploy different decision-making strategies to solve a complicated task — in this case,

 » Read More

Photonic processor could streamline 6G wireless signal processing

photonic-processor-could-streamline-6g-wireless-signal-processing

As more connected devices demand an increasing amount of bandwidth for tasks like teleworking and cloud computing, it will become extremely challenging to manage the finite amount of wireless spectrum available for all users to share.

Engineers are employing artificial intelligence to dynamically manage the available wireless spectrum, with an eye toward reducing latency and boosting performance. But most AI methods for classifying and processing wireless signals are power-hungry and can’t operate in real-time.

Now, MIT researchers have developed a novel AI hardware accelerator that is specifically designed for wireless signal processing. Their optical processor performs machine-learning computations at the speed of light, classifying wireless signals in a matter of nanoseconds.

The photonic chip is about 100 times faster than the best digital alternative, while converging to about 95 percent accuracy in signal classification. The new hardware accelerator is also scalable and flexible, so it could be used for a variety of high-performance computing applications.

 » Read More

New system enables robots to solve manipulation problems in seconds

new-system-enables-robots-to-solve-manipulation-problems-in-seconds

Ready for that long-awaited summer vacation? First, you’ll need to pack all items required for your trip into a suitcase, making sure everything fits securely without crushing anything fragile.

Because humans possess strong visual and geometric reasoning skills, this is usually a straightforward problem, even if it may take a bit of finagling to squeeze everything in.

To a robot, though, it is an extremely complex planning challenge that requires thinking simultaneously about many actions, constraints, and mechanical capabilities. Finding an effective solution could take the robot a very long time — if it can even come up with one.

Researchers from MIT and NVIDIA Research have developed a novel algorithm that dramatically speeds up the robot’s planning process. Their approach enables a robot to “think ahead” by evaluating thousands of possible solutions in parallel and then refining the best ones to meet the constraints of the robot and its environment.

 » Read More

New fuel cell could enable electric aviation

new-fuel-cell-could-enable-electric-aviation

Batteries are nearing their limits in terms of how much power they can store for a given weight. That’s a serious obstacle for energy innovation and the search for new ways to power airplanes, trains, and ships. Now, researchers at MIT and elsewhere have come up with a solution that could help electrify these transportation systems.

Instead of a battery, the new concept is a kind of fuel cell — which is similar to a battery but can be quickly refueled rather than recharged. In this case, the fuel is liquid sodium metal, an inexpensive and widely available commodity. The other side of the cell is just ordinary air, which serves as a source of oxygen atoms. In between, a layer of solid ceramic material serves as the electrolyte, allowing sodium ions to pass freely through, and a porous air-facing electrode helps the sodium to chemically react with oxygen and produce electricity.

 » Read More

With AI, researchers predict the location of virtually any protein within a human cell

with-ai,-researchers-predict-the-location-of-virtually-any-protein-within-a-human-cell

A protein located in the wrong part of a cell can contribute to several diseases, such as Alzheimer’s, cystic fibrosis, and cancer. But there are about 70,000 different proteins and protein variants in a single human cell, and since scientists can typically only test for a handful in one experiment, it is extremely costly and time-consuming to identify proteins’ locations manually.

A new generation of computational techniques seeks to streamline the process using machine-learning models that often leverage datasets containing thousands of proteins and their locations, measured across multiple cell lines. One of the largest such datasets is the Human Protein Atlas, which catalogs the subcellular behavior of over 13,000 proteins in more than 40 cell lines. But as enormous as it is, the Human Protein Atlas has only explored about 0.25 percent of all possible pairings of all proteins and cell lines within the database.

 » Read More

If time is money, here’s one way consumers value it

if-time-is-money,-here’s-one-way-consumers-value-it

As the saying goes, time is money. That’s certainly evident in the transportation sector, where people will pay more for direct flights, express trains, and other ways to get somewhere quickly.

Still, it is difficult to measure precisely how much people value their time. Now, a paper co-authored by an MIT economist uses ride-sharing data to reveal multiple implications of personalized pricing.

By focusing on a European ride-sharing platform that auctions its rides, the researchers found that people are more responsive to prices than to wait times. They also found that people pay more to save time during the workday, and that when people pay more to avoid waiting, it notably increases business revenues. And some segments of consumers are distinctly more willing than others to pay higher prices.

Specifically, when people can bid for rides that arrive sooner, the amount above the minimum price the platform can charge increases by 5.2 percent.

 » Read More

MIT engineering students crack egg dilemma, finding sideways is stronger

mit-engineering-students-crack-egg-dilemma,-finding-sideways-is-stronger

It’s been a scientific truth so universally acknowledged that it’s taught in classrooms and repeated in pop-science videos: An egg is strongest when dropped vertically, on its ends. But when MIT engineers actually put this assumption to the test, they cracked open a surprising revelation. 

Their experiments revealed that eggs dropped on their sides — not their tips — are far more resilient, thanks to a clever physics trick: Sideways eggs bend like shock absorbers, trading stiffness for superior energy absorption. Their open-access findings, published today in Communications Physics, don’t just rewrite the rules of the classic egg drop challenge — they’re a lesson in intellectual humility and curiosity. Even “settled” science can yield surprises when approached with rigor and an open mind.

At first glance, an eggshell may seem fragile, but its strength is a marvel of physics. Crack an egg on its side for your morning omelet and it breaks easily.

 » Read More

New molecular label could lead to simpler, faster tuberculosis tests

new-molecular-label-could-lead-to-simpler,-faster-tuberculosis-tests

Tuberculosis, the world’s deadliest infectious disease, is estimated to infect around 10 million people each year, and kills more than 1 million annually. Once established in the lungs, the bacteria’s thick cell wall helps it to fight off the host immune system.

Much of that cell wall is made from complex sugar molecules known as glycans, but it’s not well-understood how those glycans help to defend the bacteria. One reason for that is that there hasn’t been an easy way to label them inside cells.

MIT chemists have now overcome that obstacle, demonstrating that they can label a glycan called ManLAM using an organic molecule that reacts with specific sulfur-containing sugars. These sugars are found in only three bacterial species, the most notorious and prevalent of which is Mycobacterium tuberculosis, the microbe that causes TB.

After labeling the glycan, the researchers were able to visualize where it is located within the bacterial cell wall,

 » Read More

New model predicts a chemical reaction’s point of no return

new-model-predicts-a-chemical-reaction’s-point-of-no-return

When chemists design new chemical reactions, one useful piece of information involves the reaction’s transition state — the point of no return from which a reaction must proceed.

This information allows chemists to try to produce the right conditions that will allow the desired reaction to occur. However, current methods for predicting the transition state and the path that a chemical reaction will take are complicated and require a huge amount of computational power.

MIT researchers have now developed a machine-learning model that can make these predictions in less than a second, with high accuracy. Their model could make it easier for chemists to design chemical reactions that could generate a variety of useful compounds, such as pharmaceuticals or fuels.

“We’d like to be able to ultimately design processes to take abundant natural resources and turn them into molecules that we need, such as materials and therapeutic drugs.

 » Read More

MIT engineers print synthetic “metamaterials” that are both strong and stretchy

mit-engineers-print-synthetic-“metamaterials”-that-are-both-strong-and-stretchy

In metamaterials design, the name of the game has long been “stronger is better.”

Metamaterials are synthetic materials with microscopic structures that give the overall material exceptional properties. A huge focus has been in designing metamaterials that are stronger and stiffer than their conventional counterparts. But there’s a trade-off: The stiffer a material, the less flexible it is.

MIT engineers have now found a way to fabricate a metamaterial that is both strong and stretchy. The base material is typically highly rigid and brittle, but it is printed in precise, intricate patterns that form a structure that is both strong and flexible.

The key to the new material’s dual properties is a combination of stiff microscopic struts and a softer woven architecture. This microscopic “double network,” which is printed using a plexiglass-like polymer, produced a material that could stretch over four times its size without fully breaking.

 » Read More