Ultrasmall optical devices rewrite the rules of light manipulation

ultrasmall-optical-devices-rewrite-the-rules-of-light-manipulation

In the push to shrink and enhance technologies that control light, MIT researchers have unveiled a new platform that pushes the limits of modern optics through nanophotonics, the manipulation of light on the nanoscale, or billionths of a meter.

The result is a class of ultracompact optical devices that are not only smaller and more efficient than existing technologies, but also dynamically tunable, or switchable, from one optical mode to another. Until now, this has been an elusive combination in nanophotonics.

The work is reported in the July 8 issue of Nature Photonics.

“This work marks a significant step toward a future in which nanophotonic devices are not only compact and efficient, but also reprogrammable and adaptive, capable of dynamically responding to external inputs. The  marriage of emerging quantum materials and established nanophotonics architectures will surely bring advances to both fields,” says Riccardo Comin,

 » Read More

Photonic processor could streamline 6G wireless signal processing

photonic-processor-could-streamline-6g-wireless-signal-processing

As more connected devices demand an increasing amount of bandwidth for tasks like teleworking and cloud computing, it will become extremely challenging to manage the finite amount of wireless spectrum available for all users to share.

Engineers are employing artificial intelligence to dynamically manage the available wireless spectrum, with an eye toward reducing latency and boosting performance. But most AI methods for classifying and processing wireless signals are power-hungry and can’t operate in real-time.

Now, MIT researchers have developed a novel AI hardware accelerator that is specifically designed for wireless signal processing. Their optical processor performs machine-learning computations at the speed of light, classifying wireless signals in a matter of nanoseconds.

The photonic chip is about 100 times faster than the best digital alternative, while converging to about 95 percent accuracy in signal classification. The new hardware accelerator is also scalable and flexible, so it could be used for a variety of high-performance computing applications.

 » Read More

MIT engineers advance toward a fault-tolerant quantum computer

mit-engineers-advance-toward-a-fault-tolerant-quantum-computer

In the future, quantum computers could rapidly simulate new materials or help scientists develop faster machine-learning models, opening the door to many new possibilities.

But these applications will only be possible if quantum computers can perform operations extremely quickly, so scientists can make measurements and perform corrections before compounding error rates reduce their accuracy and reliability.

The efficiency of this measurement process, known as readout, relies on the strength of the coupling between photons, which are particles of light that carry quantum information, and artificial atoms, units of matter that are often used to store information in a quantum computer.

Now, MIT researchers have demonstrated what they believe is the strongest nonlinear light-matter coupling ever achieved in a quantum system. Their experiment is a step toward realizing quantum operations and readout that could be performed in a few nanoseconds.

The researchers used a novel superconducting circuit architecture to show nonlinear light-matter coupling that is about an order of magnitude stronger than prior demonstrations,

 » Read More