MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

mit-engineers-design-an-aerial-microrobot-that-can-fly-as-fast-as-a-bumblebee

In the future, tiny flying robots could be deployed to aid in the search for survivors trapped beneath the rubble after a devastating earthquake. Like real insects, these robots could flit through tight spaces larger robots can’t reach, while simultaneously dodging stationary obstacles and pieces of falling rubble.

So far, aerial microrobots have only been able to fly slowly along smooth trajectories, far from the swift, agile flight of real insects — until now.

MIT researchers have demonstrated aerial microrobots that can fly with speed and agility that is comparable to their biological counterparts. A collaborative team designed a new AI-based controller for the robotic bug that enabled it to follow gymnastic flight paths, such as executing continuous body flips.

With a two-part control scheme that combines high performance with computational efficiency, the robot’s speed and acceleration increased by about 450 percent and 250 percent,

 » Read More

Leading quantum at an inflection point

leading-quantum-at-an-inflection-point

Danna Freedman is seeking the early adopters.

She is the faculty director of the nascent MIT Quantum Initiative, or QMIT. In this new role, Freedman is giving shape to an ambitious, Institute-wide effort to apply quantum breakthroughs to the most consequential challenges in science, technology, industry, and national security.

The interdisciplinary endeavor, the newest of MIT President Sally Kornbluth’s strategic initiatives, will bring together MIT researchers and domain experts from a range of industries to identify and tackle practical challenges wherever quantum solutions could achieve the greatest impact.

“We’ve already seen how the breadth of progress in quantum has created opportunities to rethink the future of security and encryption, imagine new modes of navigation, and even measure gravitational waves more precisely to observe the cosmos in an entirely new way,” says Freedman, the Frederick George Keyes Professor of Chemistry.

 » Read More

A “seating chart” for atoms helps locate their positions in materials

a-“seating-chart”-for-atoms-helps-locate-their-positions-in-materials

If you think of a single atom as a grain of sand, then a wavelength of visible light — which is a thousand times larger than the atom’s width — is comparable to an ocean wave. The light wave can dwarf an atom, missing it entirely as it passes by. This gulf in size has long made it impossible for scientists to see and resolve individual atoms using optical microscopes alone.

Only recently have scientists found ways to break this “diffraction limit,” to see features that are smaller than the wavelength of light. With new techniques known as super-resolution microscopy, scientists can see down to the scale of a single molecule.

And yet, individual atoms have still been too small for optical microscopes — which are much simpler and less expensive than super-resolution techniques — to distinguish, until now.

In an open-access paper appearing today in Nature Communications,

 » Read More

MIT engineers develop a magnetic transistor for more energy-efficient electronics

mit-engineers-develop-a-magnetic-transistor-for-more-energy-efficient-electronics

Transistors, the building blocks of modern electronics, are typically made of silicon. Because it’s a semiconductor, this material can control the flow of electricity in a circuit. But silicon has fundamental physical limits that restrict how compact and energy-efficient a transistor can be.

MIT researchers have now replaced silicon with a magnetic semiconductor, creating a magnetic transistor that could enable smaller, faster, and more energy-efficient circuits. The material’s magnetism strongly influences its electronic behavior, leading to more efficient control of the flow of electricity. 

The team used a novel magnetic material and an optimization process that reduces the material’s defects, which boosts the transistor’s performance.

The material’s unique magnetic properties also allow for transistors with built-in memory, which would simplify circuit design and unlock new applications for high-performance electronics.

“People have known about magnets for thousands of years, but there are very limited ways to incorporate magnetism into electronics.

 » Read More

New laser “comb” can enable rapid identification of chemicals with extreme precision

new-laser-“comb”-can-enable-rapid-identification-of-chemicals-with-extreme-precision

Optical frequency combs are specially designed lasers that act like rulers to accurately and rapidly measure specific frequencies of light. They can be used to detect and identify chemicals and pollutants with extremely high precision.

Frequency combs would be ideal for remote sensors or portable spectrometers because they can enable accurate, real-time monitoring of multiple chemicals without complex moving parts or external equipment.

But developing frequency combs with high enough bandwidth for these applications has been a challenge. Often, researchers must add bulky components that limit scalability and performance.

Now, a team of MIT researchers has demonstrated a compact, fully integrated device that uses a carefully crafted mirror to generate a stable frequency comb with very broad bandwidth. The mirror they developed, along with an on-chip measurement platform, offers the scalability and flexibility needed for mass-producible remote sensors and portable spectrometers. This development could enable more accurate environmental monitors that can identify multiple harmful chemicals from trace gases in the atmosphere.

 » Read More

Ultrasmall optical devices rewrite the rules of light manipulation

ultrasmall-optical-devices-rewrite-the-rules-of-light-manipulation

In the push to shrink and enhance technologies that control light, MIT researchers have unveiled a new platform that pushes the limits of modern optics through nanophotonics, the manipulation of light on the nanoscale, or billionths of a meter.

The result is a class of ultracompact optical devices that are not only smaller and more efficient than existing technologies, but also dynamically tunable, or switchable, from one optical mode to another. Until now, this has been an elusive combination in nanophotonics.

The work is reported in the July 8 issue of Nature Photonics.

“This work marks a significant step toward a future in which nanophotonic devices are not only compact and efficient, but also reprogrammable and adaptive, capable of dynamically responding to external inputs. The  marriage of emerging quantum materials and established nanophotonics architectures will surely bring advances to both fields,” says Riccardo Comin,

 » Read More

New transmitter could make wireless devices more energy-efficient

new-transmitter-could-make-wireless-devices-more-energy-efficient

Researchers from MIT and elsewhere have designed a novel transmitter chip that significantly improves the energy efficiency of wireless communications, which could boost the range and battery life of a connected device.

Their approach employs a unique modulation scheme to encode digital data into a wireless signal, which reduces the amount of error in the transmission and leads to more reliable communications.

The compact, flexible system could be incorporated into existing internet-of-things devices to provide immediate gains, while also meeting the more stringent efficiency requirements of future 6G technologies.

The versatility of the chip could make it well-suited for a range of applications that require careful management of energy for communications, such as industrial sensors that continuously monitor factory conditions and smart appliances that provide real-time notifications.

“By thinking outside the box, we created a more efficient, intelligent circuit for next-generation devices that is also even better than the state-of-the-art for legacy architectures.

 » Read More

Famous double-slit experiment holds up when stripped to its quantum essentials

famous-double-slit-experiment-holds-up-when-stripped-to-its-quantum-essentials

MIT physicists have performed an idealized version of one of the most famous experiments in quantum physics. Their findings demonstrate, with atomic-level precision, the dual yet evasive nature of light. They also happen to confirm that Albert Einstein was wrong about this particular quantum scenario.

The experiment in question is the double-slit experiment, which was first performed in 1801 by the British scholar Thomas Young to show how light behaves as a wave. Today, with the formulation of quantum mechanics, the double-slit experiment is now known for its surprisingly simple demonstration of a head-scratching reality: that light exists as both a particle and a wave. Stranger still, this duality cannot be simultaneously observed. Seeing light in the form of particles instantly obscures its wave-like nature, and vice versa.

The original experiment involved shining a beam of light through two parallel slits in a screen and observing the pattern that formed on a second,

 » Read More

Robotic probe quickly measures key properties of new materials

robotic-probe-quickly-measures-key-properties-of-new-materials

Scientists are striving to discover new semiconductor materials that could boost the efficiency of solar cells and other electronics. But the pace of innovation is bottlenecked by the speed at which researchers can manually measure important material properties.

A fully autonomous robotic system developed by MIT researchers could speed things up.

Their system utilizes a robotic probe to measure an important electrical property known as photoconductance, which is how electrically responsive a material is to the presence of light.

The researchers inject materials-science-domain knowledge from human experts into the machine-learning model that guides the robot’s decision making. This enables the robot to identify the best places to contact a material with the probe to gain the most information about its photoconductance, while a specialized planning procedure finds the fastest way to move between contact points.

During a 24-hour test, the fully autonomous robotic probe took more than 125 unique measurements per hour,

 » Read More

New 3D chips could make electronics faster and more energy-efficient

new-3d-chips-could-make-electronics-faster-and-more-energy-efficient

The advanced semiconductor material gallium nitride will likely be key for the next generation of high-speed communication systems and the power electronics needed for state-of-the-art data centers.

Unfortunately, the high cost of gallium nitride (GaN) and the specialization required to incorporate this semiconductor material into conventional electronics have limited its use in commercial applications.

Now, researchers from MIT and elsewhere have developed a new fabrication process that integrates high-performance GaN transistors onto standard silicon CMOS chips in a way that is low-cost and scalable, and compatible with existing semiconductor foundries.

Their method involves building many tiny transistors on the surface of a GaN chip, cutting out each individual transistor, and then bonding just the necessary number of transistors onto a silicon chip using a low-temperature process that preserves the functionality of both materials.

The cost remains minimal since only a tiny amount of GaN material is added to the chip,

 » Read More