MIT study finds targets for a new tuberculosis vaccine

mit-study-finds-targets-for-a-new-tuberculosis-vaccine

A large-scale screen of tuberculosis proteins has revealed several possible antigens that could be developed as a new vaccine for TB, the world’s deadliest infectious disease.

In the new study, a team of MIT biological engineers was able to identify a handful of immunogenic peptides, out of more than 4,000 bacterial proteins, that appear to stimulate a strong response from a type of T cells responsible for orchestrating immune cells’ response to infection.

There is currently only one vaccine for tuberculosis, known as BCG, which is a weakened version of a bacterium that causes TB in cows. This vaccine is widely administered in some parts of the world, but it poorly protects adults against pulmonary TB. Worldwide, tuberculosis kills more than 1 million people every year.

“There’s still a huge TB burden globally that we’d like to make an impact on,” says Bryan Bryson, an associate professor of biological engineering at MIT and a member of the Ragon Institute of Mass General Brigham,

 » Read More

New RNA tool to advance cancer and infectious disease research and treatment

new-rna-tool-to-advance-cancer-and-infectious-disease-research-and-treatment

Researchers at the Antimicrobial Resistance (AMR) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, have developed a powerful tool capable of scanning thousands of biological samples to detect transfer ribonucleic acid (tRNA) modifications — tiny chemical changes to RNA molecules that help control how cells grow, adapt to stress, and respond to diseases such as cancer and antibiotic‑resistant infections. This tool opens up new possibilities for science, health care, and industry — from accelerating disease research and enabling more precise diagnostics to guiding the development of more effective medical treatments for diseases such as cancer and antibiotic-resistant infections.

For this study, the SMART AMR team worked in collaboration with researchers at MIT, Nanyang Technological University in Singapore, the University of Florida, the University at Albany in New York, and Lodz University of Technology in Poland.

 » Read More

Locally produced proteins help mitochondria function

locally-produced-proteins-help-mitochondria-function

Our cells produce a variety of proteins, each with a specific role that, in many cases, means that they need to be in a particular part of the cell where that role is needed. One of the ways that cells ensure certain proteins end up in the right location at the right time is through localized translation, a process that ensures that proteins are made — or translated — close to where they will be needed. MIT professor of biology and Whitehead Institute for Biomedical Research member Jonathan Weissman and colleagues have studied localized translation in order to understand how it affects cell functions and allows cells to quickly respond to changing conditions.

Now, Weissman, who is also a Howard Hughes Medical Institute Investigator, and postdoc in his lab Jingchuan Luo have expanded our knowledge of localized translation at mitochondria, structures that generate energy for the cell. In an open-access paper published today in Cell,

 » Read More

How AI could speed the development of RNA vaccines and other RNA therapies

how-ai-could-speed-the-development-of-rna-vaccines-and-other-rna-therapies

Using artificial intelligence, MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies.

After training a machine-learning model to analyze thousands of existing delivery particles, the researchers used it to predict new materials that would work even better. The model also enabled the researchers to identify particles that would work well in different types of cells, and to discover ways to incorporate new types of materials into the particles.

“What we did was apply machine-learning tools to help accelerate the identification of optimal ingredient mixtures in lipid nanoparticles to help target a different cell type or help incorporate different materials, much faster than previously was possible,” says Giovanni Traverso, an associate professor of mechanical engineering at MIT, a gastroenterologist at Brigham and Women’s Hospital, and the senior author of the study.

This approach could dramatically speed the process of developing new RNA vaccines,

 » Read More

Rationale engineering generates a compact new tool for gene therapy

rationale-engineering-generates-a-compact-new-tool-for-gene-therapy

Scientists at the McGovern Institute for Brain Research at MIT and the Broad Institute of MIT and Harvard have re-engineered a compact RNA-guided enzyme they found in bacteria into an efficient, programmable editor of human DNA. 

The protein they created, called NovaIscB, can be adapted to make precise changes to the genetic code, modulate the activity of specific genes, or carry out other editing tasks. Because its small size simplifies delivery to cells, NovaIscB’s developers say it is a promising candidate for developing gene therapies to treat or prevent disease.

The study was led by Feng Zhang, the James and Patricia Poitras Professor of Neuroscience at MIT who is also an investigator at the McGovern Institute and the Howard Hughes Medical Institute, and a core member of the Broad Institute. Zhang and his team reported their open-access work this month in the journal Nature Biotechnology.

 » Read More

A brief history of expansion microscopy

a-brief-history-of-expansion-microscopy

Nearly 150 years ago, scientists began to imagine how information might flow through the brain based on the shapes of neurons they had seen under the microscopes of the time. With today’s imaging technologies, scientists can zoom in much further, seeing the tiny synapses through which neurons communicate with one another, and even the molecules the cells use to relay their messages. These inside views can spark new ideas about how healthy brains work and reveal important changes that contribute to disease.

This sharper view of biology is not just about the advances that have made microscopes more powerful than ever before. Using methodology developed in the lab of MIT McGovern Institute for Brain Research investigator Edward Boyden, researchers around the world are imaging samples that have been swollen to as much as 20 times their original size so their finest features can be seen more clearly.

 » Read More