Robotic probe quickly measures key properties of new materials

robotic-probe-quickly-measures-key-properties-of-new-materials

Scientists are striving to discover new semiconductor materials that could boost the efficiency of solar cells and other electronics. But the pace of innovation is bottlenecked by the speed at which researchers can manually measure important material properties.

A fully autonomous robotic system developed by MIT researchers could speed things up.

Their system utilizes a robotic probe to measure an important electrical property known as photoconductance, which is how electrically responsive a material is to the presence of light.

The researchers inject materials-science-domain knowledge from human experts into the machine-learning model that guides the robot’s decision making. This enables the robot to identify the best places to contact a material with the probe to gain the most information about its photoconductance, while a specialized planning procedure finds the fastest way to move between contact points.

During a 24-hour test, the fully autonomous robotic probe took more than 125 unique measurements per hour,

 » Read More

New imaging technique reconstructs the shapes of hidden objects

new-imaging-technique-reconstructs-the-shapes-of-hidden-objects

A new imaging technique developed by MIT researchers could enable quality-control robots in a warehouse to peer through a cardboard shipping box and see that the handle of a mug buried under packing peanuts is broken.

Their approach leverages millimeter wave (mmWave) signals, the same type of signals used in Wi-Fi, to create accurate 3D reconstructions of objects that are blocked from view.

The waves can travel through common obstacles like plastic containers or interior walls, and reflect off hidden objects. The system, called mmNorm, collects those reflections and feeds them into an algorithm that estimates the shape of the object’s surface.

This new approach achieved 96 percent reconstruction accuracy on a range of everyday objects with complex, curvy shapes, like silverware and a power drill. State-of-the-art baseline methods achieved only 78 percent accuracy.

In addition, mmNorm does not require additional bandwidth to achieve such high accuracy.

 » Read More

Using generative AI to help robots jump higher and land safely

using-generative-ai-to-help-robots-jump-higher-and-land-safely

Diffusion models like OpenAI’s DALL-E are becoming increasingly useful in helping brainstorm new designs. Humans can prompt these systems to generate an image, create a video, or refine a blueprint, and come back with ideas they hadn’t considered before.

But did you know that generative artificial intelligence (GenAI) models are also making headway in creating working robots? Recent diffusion-based approaches have generated structures and the systems that control them from scratch. With or without a user’s input, these models can make new designs and then evaluate them in simulation before they’re fabricated.

A new approach from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) applies this generative know-how toward improving humans’ robotic designs. Users can draft a 3D model of a robot and specify which parts they’d like to see a diffusion model modify, providing its dimensions beforehand. GenAI then brainstorms the optimal shape for these areas and tests its ideas in simulation.

 » Read More

Researchers present bold ideas for AI at MIT Generative AI Impact Consortium kickoff event

researchers-present-bold-ideas-for-ai-at-mit-generative-ai-impact-consortium-kickoff-event

Launched in February of this year, the MIT Generative AI Impact Consortium (MGAIC), a presidential initiative led by MIT’s Office of Innovation and Strategy and administered by the MIT Stephen A. Schwarzman College of Computing, issued a call for proposals, inviting researchers from across MIT to submit ideas for innovative projects studying high-impact uses of generative AI models.

The call received 180 submissions from nearly 250 faculty members, spanning all of MIT’s five schools and the college. The overwhelming response across the Institute exemplifies the growing interest in AI and follows in the wake of MIT’s Generative AI Week and call for impact papers. Fifty-five proposals were selected for MGAIC’s inaugural seed grants, with several more selected to be funded by the consortium’s founding company members.

Over 30 funding recipients presented their proposals to the greater MIT community at a kickoff event on May 13.

 » Read More

New system enables robots to solve manipulation problems in seconds

new-system-enables-robots-to-solve-manipulation-problems-in-seconds

Ready for that long-awaited summer vacation? First, you’ll need to pack all items required for your trip into a suitcase, making sure everything fits securely without crushing anything fragile.

Because humans possess strong visual and geometric reasoning skills, this is usually a straightforward problem, even if it may take a bit of finagling to squeeze everything in.

To a robot, though, it is an extremely complex planning challenge that requires thinking simultaneously about many actions, constraints, and mechanical capabilities. Finding an effective solution could take the robot a very long time — if it can even come up with one.

Researchers from MIT and NVIDIA Research have developed a novel algorithm that dramatically speeds up the robot’s planning process. Their approach enables a robot to “think ahead” by evaluating thousands of possible solutions in parallel and then refining the best ones to meet the constraints of the robot and its environment.

 » Read More

Ping pong bot returns shots with high-speed precision

ping-pong-bot-returns-shots-with-high-speed-precision

MIT engineers are getting in on the robotic ping pong game with a powerful, lightweight design that returns shots with high-speed precision.

The new table tennis bot comprises a multijointed robotic arm that is fixed to one end of a ping pong table and wields a standard ping pong paddle. Aided by several high-speed cameras and a high-bandwidth predictive control system, the robot quickly estimates the speed and trajectory of an incoming ball and executes one of several swing types — loop, drive, or chop — to precisely hit the ball to a desired location on the table with various types of spin.

In tests, the engineers threw 150 balls at the robot, one after the other, from across the ping pong table. The bot successfully returned the balls with a hit rate of about 88 percent across all three swing types. The robot’s strike speed approaches the top return speeds of human players and is faster than that of other robotic table tennis designs.

 » Read More

System lets robots identify an object’s properties through handling

system-lets-robots-identify-an-object’s-properties-through-handling

A human clearing junk out of an attic can often guess the contents of a box simply by picking it up and giving it a shake, without the need to see what’s inside. Researchers from MIT, Amazon Robotics, and the University of British Columbia have taught robots to do something similar.

They developed a technique that enables robots to use only internal sensors to learn about an object’s weight, softness, or contents by picking it up and gently shaking it. With their method, which does not require external measurement tools or cameras, the robot can accurately guess parameters like an object’s mass in a matter of seconds.

This low-cost technique could be especially useful in applications where cameras might be less effective, such as sorting objects in a dark basement or clearing rubble inside a building that partially collapsed after an earthquake.

Key to their approach is a simulation process that incorporates models of the robot and the object to rapidly identify characteristics of that object as the robot interacts with it. 

 » Read More

Robotic system zeroes in on objects most relevant for helping humans

robotic-system-zeroes-in-on-objects-most-relevant-for-helping-humans

For a robot, the real world is a lot to take in. Making sense of every data point in a scene can take a huge amount of computational effort and time. Using that information to then decide how to best help a human is an even thornier exercise.

Now, MIT roboticists have a way to cut through the data noise, to help robots focus on the features in a scene that are most relevant for assisting humans.

Their approach, which they aptly dub “Relevance,” enables a robot to use cues in a scene, such as audio and visual information, to determine a human’s objective and then quickly identify the objects that are most likely to be relevant in fulfilling that objective. The robot then carries out a set of maneuvers to safely offer the relevant objects or actions to the human.

The researchers demonstrated the approach with an experiment that simulated a conference breakfast buffet.

 » Read More