Universal nanosensor unlocks the secrets to plant growth

universal-nanosensor-unlocks-the-secrets-to-plant-growth

Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group within the Singapore-MIT Alliance for Research and Technology have developed the world’s first near-infrared fluorescent nanosensor capable of real-time, nondestructive, and species-agnostic detection of indole-3-acetic acid (IAA) — the primary bioactive auxin hormone that controls the way plants develop, grow, and respond to stress.

Auxins, particularly IAA, play a central role in regulating key plant processes such as cell division, elongation, root and shoot development, and response to environmental cues like light, heat, and drought. External factors like light affect how auxin moves within the plant, temperature influences how much is produced, and a lack of water can disrupt hormone balance. When plants cannot effectively regulate auxins, they may not grow well, adapt to changing conditions, or produce as much food. 

Existing IAA detection methods, such as liquid chromatography, require taking plant samples from the plant — which harms or removes part of it.

 » Read More

A new technology for extending the shelf life of produce

a-new-technology-for-extending-the-shelf-life-of-produce

We’ve all felt the sting of guilt when fruit and vegetables go bad before we could eat them. Now, researchers from MIT and the Singapore-MIT Alliance for Research and Technology (SMART) have shown they can extend the shelf life of harvested plants by injecting them with melatonin using biodegradable microneedles.

That’s a big deal because the problem of food waste goes way beyond our salads. More than 30 percent of the world’s food is lost after it’s harvested — enough to feed more than 1 billion people. Refrigeration is the most common way to preserve foods, but it requires energy and infrastructure that many regions of the world can’t afford or lack access to.

The researchers believe their system could offer an alternative or complement to refrigeration. Central to their approach are patches of silk microneedles. The microneedles can get through the tough, waxy skin of plants without causing a stress response,

 » Read More

System lets robots identify an object’s properties through handling

system-lets-robots-identify-an-object’s-properties-through-handling

A human clearing junk out of an attic can often guess the contents of a box simply by picking it up and giving it a shake, without the need to see what’s inside. Researchers from MIT, Amazon Robotics, and the University of British Columbia have taught robots to do something similar.

They developed a technique that enables robots to use only internal sensors to learn about an object’s weight, softness, or contents by picking it up and gently shaking it. With their method, which does not require external measurement tools or cameras, the robot can accurately guess parameters like an object’s mass in a matter of seconds.

This low-cost technique could be especially useful in applications where cameras might be less effective, such as sorting objects in a dark basement or clearing rubble inside a building that partially collapsed after an earthquake.

Key to their approach is a simulation process that incorporates models of the robot and the object to rapidly identify characteristics of that object as the robot interacts with it. 

 » Read More

New electronic “skin” could enable lightweight night-vision glasses

new-electronic-“skin”-could-enable-lightweight-night-vision-glasses

MIT engineers have developed a technique to grow and peel ultrathin “skins” of electronic material. The method could pave the way for new classes of electronic devices, such as ultrathin wearable sensors, flexible transistors and computing elements, and highly sensitive and compact imaging devices. 

As a demonstration, the team fabricated a thin membrane of pyroelectric material — a class of heat-sensing material that produces an electric current in response to changes in temperature. The thinner the pyroelectric material, the better it is at sensing subtle thermal variations.

With their new method, the team fabricated the thinnest pyroelectric membrane yet, measuring 10 nanometers thick, and demonstrated that the film is highly sensitive to heat and radiation across the far-infrared spectrum.

The newly developed film could enable lighter, more portable, and highly accurate far-infrared (IR) sensing devices, with potential applications for night-vision eyewear and autonomous driving in foggy conditions.

 » Read More

Robotic system zeroes in on objects most relevant for helping humans

robotic-system-zeroes-in-on-objects-most-relevant-for-helping-humans

For a robot, the real world is a lot to take in. Making sense of every data point in a scene can take a huge amount of computational effort and time. Using that information to then decide how to best help a human is an even thornier exercise.

Now, MIT roboticists have a way to cut through the data noise, to help robots focus on the features in a scene that are most relevant for assisting humans.

Their approach, which they aptly dub “Relevance,” enables a robot to use cues in a scene, such as audio and visual information, to determine a human’s objective and then quickly identify the objects that are most likely to be relevant in fulfilling that objective. The robot then carries out a set of maneuvers to safely offer the relevant objects or actions to the human.

The researchers demonstrated the approach with an experiment that simulated a conference breakfast buffet.

 » Read More