Researchers from the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, along with colleagues from KK Women’s and Children’s Hospital (KKH), have developed a first-of-its-kind device to profile the immune function of newborns. Using a single drop of blood, the BiophysicaL Immune Profiling for Infants (BLIPI) system provides real-time insights into newborns’ immune responses, enabling the early detection of severe inflammatory conditions and allowing for timely interventions. This critical innovation addresses the urgent and unmet need for rapid and minimally invasive diagnostic tools to protect vulnerable newborns, especially those born prematurely. Critical unmet need in newborn care Premature infants are particularly vulnerable to life-threatening conditions such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis — a bloodstream infection occurring in the first weeks of life — is a major global health challenge, causing up to 1 million infant deaths worldwide annually. NEC, a serious intestinal disease that causes severe inflammation, » Read More
Universal nanosensor unlocks the secrets to plant growth
Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group within the Singapore-MIT Alliance for Research and Technology have developed the world’s first near-infrared fluorescent nanosensor capable of real-time, nondestructive, and species-agnostic detection of indole-3-acetic acid (IAA) — the primary bioactive auxin hormone that controls the way plants develop, grow, and respond to stress.
Auxins, particularly IAA, play a central role in regulating key plant processes such as cell division, elongation, root and shoot development, and response to environmental cues like light, heat, and drought. External factors like light affect how auxin moves within the plant, temperature influences how much is produced, and a lack of water can disrupt hormone balance. When plants cannot effectively regulate auxins, they may not grow well, adapt to changing conditions, or produce as much food.
Existing IAA detection methods, such as liquid chromatography, require taking plant samples from the plant — which harms or removes part of it.
A new technology for extending the shelf life of produce
We’ve all felt the sting of guilt when fruit and vegetables go bad before we could eat them. Now, researchers from MIT and the Singapore-MIT Alliance for Research and Technology (SMART) have shown they can extend the shelf life of harvested plants by injecting them with melatonin using biodegradable microneedles.
That’s a big deal because the problem of food waste goes way beyond our salads. More than 30 percent of the world’s food is lost after it’s harvested — enough to feed more than 1 billion people. Refrigeration is the most common way to preserve foods, but it requires energy and infrastructure that many regions of the world can’t afford or lack access to.
The researchers believe their system could offer an alternative or complement to refrigeration. Central to their approach are patches of silk microneedles. The microneedles can get through the tough, waxy skin of plants without causing a stress response,