Robotic probe quickly measures key properties of new materials

robotic-probe-quickly-measures-key-properties-of-new-materials

Scientists are striving to discover new semiconductor materials that could boost the efficiency of solar cells and other electronics. But the pace of innovation is bottlenecked by the speed at which researchers can manually measure important material properties.

A fully autonomous robotic system developed by MIT researchers could speed things up.

Their system utilizes a robotic probe to measure an important electrical property known as photoconductance, which is how electrically responsive a material is to the presence of light.

The researchers inject materials-science-domain knowledge from human experts into the machine-learning model that guides the robot’s decision making. This enables the robot to identify the best places to contact a material with the probe to gain the most information about its photoconductance, while a specialized planning procedure finds the fastest way to move between contact points.

During a 24-hour test, the fully autonomous robotic probe took more than 125 unique measurements per hour,

 » Read More

Decarbonizing steel is as tough as steel

decarbonizing-steel-is-as-tough-as-steel

The long-term aspirational goal of the Paris Agreement on climate change is to cap global warming at 1.5 degrees Celsius above preindustrial levels, and thereby reduce the frequency and severity of floods, droughts, wildfires, and other extreme weather events. Achieving that goal will require a massive reduction in global carbon dioxide (CO2) emissions across all economic sectors. A major roadblock, however, could be the industrial sector, which accounts for roughly 25 percent of global energy- and process-related CO2 emissions — particularly within the iron and steel sector, industry’s largest emitter of CO2.

Iron and steel production now relies heavily on fossil fuels (coal or natural gas) for heat, converting iron ore to iron, and making steel strong. Steelmaking could be decarbonized by a combination of several methods, including carbon capture technology, the use of low- or zero-carbon fuels, and increased use of recycled steel.

 » Read More

Study shows making hydrogen with soda cans and seawater is scalable and sustainable

study-shows-making-hydrogen-with-soda-cans-and-seawater-is-scalable-and-sustainable

Hydrogen has the potential to be a climate-friendly fuel since it doesn’t release carbon dioxide when used as an energy source. Currently, however, most methods for producing hydrogen involve fossil fuels, making hydrogen less of a “green” fuel over its entire life cycle.

A new process developed by MIT engineers could significantly shrink the carbon footprint associated with making hydrogen.

Last year, the team reported that they could produce hydrogen gas by combining seawater, recycled soda cans, and caffeine. The question then was whether the benchtop process could be applied at an industrial scale, and at what environmental cost.

Now, the researchers have carried out a “cradle-to-grave” life cycle assessment, taking into account every step in the process at an industrial scale. For instance, the team calculated the carbon emissions associated with acquiring and processing aluminum, reacting it with seawater to produce hydrogen,

 » Read More

AI stirs up the recipe for concrete in MIT study

ai-stirs-up-the-recipe-for-concrete-in-mit-study

For weeks, the whiteboard in the lab was crowded with scribbles, diagrams, and chemical formulas. A research team across the Olivetti Group and the MIT Concrete Sustainability Hub (CSHub) was working intensely on a key problem: How can we reduce the amount of cement in concrete to save on costs and emissions? 

The question was certainly not new; materials like fly ash, a byproduct of coal production, and slag, a byproduct of steelmaking, have long been used to replace some of the cement in concrete mixes. However, the demand for these products is outpacing supply as industry looks to reduce its climate impacts by expanding their use, making the search for alternatives urgent. The challenge that the team discovered wasn’t a lack of candidates; the problem was that there were too many to sort through.

On May 17, the team, led by postdoc Soroush Mahjoubi, published an open-access paper in Nature’s Communications Materials outlining their solution.

 » Read More

MIT announces the Initiative for New Manufacturing

mit-announces-the-initiative-for-new-manufacturing

MIT today launched its Initiative for New Manufacturing (INM), an Institute-wide effort to reinfuse U.S. industrial production with leading-edge technologies, bolster crucial U.S. economic sectors, and ignite job creation.

The initiative will encompass advanced research, innovative education programs, and partnership with companies across many sectors, in a bid to help transform manufacturing and elevate its impact.

“We want to work with firms big and small, in cities, small towns and everywhere in between, to help them adopt new approaches for increased productivity,” MIT President Sally A. Kornbluth wrote in a letter to the Institute community this morning. “We want to deliberately design high-quality, human-centered manufacturing jobs that bring new life to communities across the country.”

Kornbluth added: “Helping America build a future of new manufacturing is a perfect job for MIT — and I’m convinced that there is no more important work we can do to meet the moment and serve the nation now.”

The Initiative for New Manufacturing also announced its first six founding industry consortium members: Amgen,

 » Read More

New fuel cell could enable electric aviation

new-fuel-cell-could-enable-electric-aviation

Batteries are nearing their limits in terms of how much power they can store for a given weight. That’s a serious obstacle for energy innovation and the search for new ways to power airplanes, trains, and ships. Now, researchers at MIT and elsewhere have come up with a solution that could help electrify these transportation systems.

Instead of a battery, the new concept is a kind of fuel cell — which is similar to a battery but can be quickly refueled rather than recharged. In this case, the fuel is liquid sodium metal, an inexpensive and widely available commodity. The other side of the cell is just ordinary air, which serves as a source of oxygen atoms. In between, a layer of solid ceramic material serves as the electrolyte, allowing sodium ions to pass freely through, and a porous air-facing electrode helps the sodium to chemically react with oxygen and produce electricity.

 » Read More

Study: Climate change may make it harder to reduce smog in some regions

study:-climate-change-may-make-it-harder-to-reduce-smog-in-some-regions

Global warming will likely hinder our future ability to control ground-level ozone, a harmful air pollutant that is a primary component of smog, according to a new MIT study.

The results could help scientists and policymakers develop more effective strategies for improving both air quality and human health. Ground-level ozone causes a host of detrimental health impacts, from asthma to heart disease, and contributes to thousands of premature deaths each year.

The researchers’ modeling approach reveals that, as the Earth warms due to climate change, ground-level ozone will become less sensitive to reductions in nitrogen oxide emissions in eastern North America and Western Europe. In other words, it will take greater nitrogen oxide emission reductions to get the same air quality benefits.

However, the study also shows that the opposite would be true in northeast Asia, where cutting emissions would have a greater impact on reducing ground-level ozone in the future. 

 » Read More

3 Questions: Making the most of limited data to boost pavement performance

3-questions:-making-the-most-of-limited-data-to-boost-pavement-performance

Pavements form the backbone of our built environment. In the United States, almost 2.8 million lane-miles, or about 4.6 million lane-kilometers, are paved. They take us to work or school, take goods to their destinations, and much more.

To secure a more sustainable future, we must take a careful look at the long-term performance and environmental impacts of our pavements. Haoran Li, a postdoc at the MIT Concrete Sustainability Hub and the Department of Civil and Environmental Engineering, is deeply invested in studying how to give stakeholders the information and tools they need to make informed pavement decisions with the future in mind. Here, he discusses life-cycle assessments for pavements as well as research from MIT in addressing pavement sustainability.

Q: What is life-cycle assessment, and why does it matter for pavements?

A: Life-cycle assessment (LCA) is a method that helps us holistically assess the environmental impacts of products and systems throughout their life cycle — everything from the impacts of raw materials to construction,

 » Read More

The MIT-Portugal Program enters Phase 4

the-mit-portugal-program-enters-phase-4

Since its founding 19 years ago as a pioneering collaboration with Portuguese universities, research institutions and corporations, the MIT-Portugal Program (MPP) has achieved a slew of successes — from enabling 47 entrepreneurial spinoffs and funding over 220 joint projects between MIT and Portuguese researchers to training a generation of exceptional researchers on both sides of the Atlantic.

In March, with nearly two decades of collaboration under their belts, MIT and the Portuguese Science and Technology Foundation (FCT) signed an agreement that officially launches the program’s next chapter. Running through 2030, MPP’s Phase 4 will support continued exploration of innovative ideas and solutions in fields ranging from artificial intelligence and nanotechnology to climate change — both on the MIT campus and with partners throughout Portugal.  

“One of the advantages of having a program that has gone on so long is that we are pretty well familiar with each other at this point.

 » Read More