MIT software tool turns everyday objects into animated, eye-catching displays

mit-software-tool-turns-everyday-objects-into-animated,-eye-catching-displays

Whether you’re an artist, advertising specialist, or just looking to spruce up your home, turning everyday objects into dynamic displays is a great way to make them more visually engaging. For example, you could turn a kids’ book into a handheld cartoon of sorts, making the reading experience more immersive and memorable for a child.

But now, thanks to MIT researchers, it’s also possible to make dynamic displays without using electronics, using barrier-grid animations (or scanimations), which use printed materials instead. This visual trick involves sliding a patterned sheet across an image to create the illusion of a moving image. The secret of barrier-grid animations lies in its name: An overlay called a barrier (or grid) often resembling a picket fence moves across, rotates around, or tilts toward an image to reveal frames in an animated sequence. That underlying picture is a combination of each still,

 » Read More

How repetition helps art speak to us

how-repetition-helps-art-speak-to-us

Often when we listen to music, we just instinctually enjoy it. Sometimes, though, it’s worth dissecting a song or other composition to figure out how it’s built.

Take the 1953 jazz standard “Satin Doll,” written by Duke Ellington and Billy Strayhorn, whose subtle structure rewards a close listening. As it happens, MIT Professor Emeritus Samuel Jay Keyser, a distinguished linguist and an avid trombonist on the side, has given the song careful scrutiny.

To Keyser, “Satin Doll” is a glittering example of what he calls the “same/except” construction in art. A basic rhyme, like “rent” and “tent,” is another example of this construction, given the shared rhyming sound and the different starting consonants.

In “Satin Doll,” Keyser observes, both the music and words feature a “same/except” structure. For instance, the rhythm of the first two bars of “Satin Doll” is the same as the second two bars,

 » Read More

Have a damaged painting? Restore it in just hours with an AI-generated “mask”

have-a-damaged-painting?-restore-it-in-just-hours-with-an-ai-generated-“mask”

Art restoration takes steady hands and a discerning eye. For centuries, conservators have restored paintings by identifying areas needing repair, then mixing an exact shade to fill in one area at a time. Often, a painting can have thousands of tiny regions requiring individual attention. Restoring a single painting can take anywhere from a few weeks to over a decade.

In recent years, digital restoration tools have opened a route to creating virtual representations of original, restored works. These tools apply techniques of computer vision, image recognition, and color matching, to generate a “digitally restored” version of a painting relatively quickly.

Still, there has been no way to translate digital restorations directly onto an original work, until now. In a paper appearing today in the journal Nature, Alex Kachkine, a mechanical engineering graduate student at MIT, presents a new method he’s developed to physically apply a digital restoration directly onto an original painting.

 » Read More